Experimental Overview

K. Desch • University of Freiburg • 09/03/2006

- High Resolution Detectors Why does it matter?
- Detector Concepts
- Component R&D + Infrastructure
- Physics Studies
- LHC+ILC: Facing the first LHC data

The Ideal ILC Detector

would measure something like this:

=====		:======							======
3	!e+!	21	-11	1	0.000	0.000	400.000	400.000	0.001
4	!e-!	21	11	2	0.000	0.000	-400.000	400.000	0.001
5	!e+!	21	-11	3	0.000	0.000	400.000	400.000	0.000
6	!e-!	21	11	4	0.000	0.000	-400.000	400.000	0.000
7	!Z0!	21	23	0	0.000	0.000	0.000	800.000	800.000
8	!t!	21	6	7	41.155	57.303	-352.640	400.439	176.123
9	!tbar!	21	-6	7	-41.155	-57.303	352.640	399.561	174.118
10	! W+!	21	24	8	68.018	62.988	-232.415	262.948	80.814
11	!b!	21	5	8	-36.648	-14.839	-8.097	40.643	4.800
12	! W-!	21	-24	9	-34.659	-87.829	98.869	156.649	76.477
13	!bbar!	21	-5	9	38.081	22.927	-15.127	47.198	4.800
14	!dbar!	21	-1	10	48.580	39.784	-56.545	84.500	0.330
15	!u!	21	2	10	19.128	22.953	-175.063	177.595	0.330
16	!d!	21	1	12	-48.424	-60.075	33.387	84.076	0.330
17	!ubar!	21	-2	12	14.405	-26.560	64.202	70.957	0.330

The Ideal ILC Detector

the best we could hope for:

```
125 pi+
                          211
                                 59
                                       1.690
                                                -0.865
                                                          -1.257
                                                                     2.281
                                                                               0.140
                    1
126 pi-
                    1
                         -211
                                 59
                                       1.955
                                                -0.869
                                                          -1.646
                                                                     2.703
                                                                               0.140
127 (eta)
                  11
                          221
                                 59
                                       2.814
                                                -1.261
                                                          -2.331
                                                                     3.904
                                                                               0.547
128 pi-
                         -211
                                       0.065
                                                 0.005
                                                           0.044
                                                                     0.160
                                                                               0.140
                                 60
                    1
129 pi+
                    1
                          211
                                 60
                                       0.475
                                                -0.601
                                                          -1.026
                                                                     1.288
                                                                               0.140
130 pi+
                   1
                          211
                                 62
                                       1.478
                                                -0.729
                                                          -1.135
                                                                     2.006
                                                                               0.140
131 (pi0)
                  11
                          111
                                 62
                                       8.427
                                                -5.137
                                                          -8.188
                                                                    12.824
                                                                               0.135
132 nu taubar
                   1
                          -16
                                 63
                                       8.732
                                                -5.586
                                                          -7.281
                                                                    12.667
                                                                               0.000
                  11
                                 63
                                      16.252
                                                -7.858
                                                         -13.819
                                                                    22.803
                                                                               1.777
133 (tau-)
                           15
134 (D*0)
                  11
                                 63
                                      35.949
                                               -20.857
                                                         -31.248
                                                                    52.036
                                                                               2.007
                          423
135 pi-
                   1
                         -211
                                 65
                                      -0.606
                                                -2.085
                                                          -2.852
                                                                     3.588
                                                                               0.140
136 pi+
                          211
                                 65
                                      -2.509
                                                -8.867
                                                         -10.402
                                                                    13.898
                                                                               0.140
                    1
137 pi+
                    1
                          211
                                 66
                                      -0.514
                                                -1.198
                                                          -1.532
                                                                     2.017
                                                                               0.140
                                                          -6.541
138 (pi0)
                                      -1.021
                  11
                          111
                                 66
                                               -6.020
                                                                     8.949
                                                                               0.135
139 pi+
                   1
                          211
                                 68
                                      -0.233
                                                -1.549
                                                          -1.620
                                                                     2.258
                                                                               0.140
140 (pi0)
                  11
                                 68
                                      -3.732
                                               -13.740
                                                         -13.880
                                                                    19.884
                                                                               0.135
                          111
141 gamma
                           22
                                 71
                                      -2.608
                                               -10.515
                                                         -10.281
                                                                    14.935
                                                                               0.000
                    1
142 gamma
                           22
                                 71
                                      -1.547
                                                -6.002
                                                          -5.765
                                                                     8.465
                                                                               0.000
                    1
```

and then use our knowledge of physics to reconstruct quarks, gluons, charged leptons, neutrinos(!) as good as possible

The Ideal ILC Detector

To do so, the detector has to provide

- precision tracking for charged particles
- highly granular calorimetry (separate charged from neutral, measure neutral)
- precision vertex detector (identify heavy flavours b,c,τ)
- · capability to identify muons
- 4π - ϵ angular coverage
- precise diagnostics of initial state (luminosity, energy, polarisation)
- cope with backgrounds

Tracking:

momentum resolution counts!

Calorimetry:

need to measure sub-fb cross sections in hadronic final states!

not a question of better or worse but a question of

Flavour ID:

ILC conditions allow for unprecedented flavour tagging -

only if we manage to build an unprecedented vertex detector

Tau lepton reconstruction:

Sometimes it's not enough to know that it was a tau

Need to reconstruct its decay mode to measure its polarisation

Tau-Leptons challenge the whole detector!

Forward hermeticity:

muons at 1 TeV from smuon pair production

If we talk about 'cosmic connections' we have to talk about beamstrahlung, crossing angles, rad-hard calorimeters and all that...

Precise measurement of
Luminosity (spectrum),
Beam Energy
Polarisation
has direct impact on the physics

MDI - Cope with backgrounds

High resolution efficient detector increases the effective luminosity

$$\sigma(\text{stat}) = \text{sqrt}(\epsilon_S S + \epsilon_B B)/\epsilon_S S \sim 1/\text{sqrt}(L)$$

 $\sigma(\text{syst}) = \text{sqrt}(\Delta S^2 + \Delta B^2)/S \sim B/S \text{ indep. of } L$

Better resolution, efficiency, and acceptance mean

- need less luminosity for the same significance
- lowering systematic boundary

going from 60% to 30% almost doubles effective luminosity

Detector Design(s)

We do not start today to think about all of that...

But we need to

- optimize the different designs
- compare complementary approaches
- increase the amount of detector R&D

GDE requested costed concept reports by end 2006

Show that required performance can be reached at known cost

Concept should trigger a focused detector R&D

Concepts are not proto-collaborations!

World-wide participation in each concept desirable!

Detector Design(s)

Choices:

Size: large - medium - small (B-field)

Calorimetry: Particle Flow or E-resolution?

Tracking: Silicon or Gaseous?

Muons: instrumented iron or double solenoid?

Common:

vertex detector forward instrumentation

Optimization:

performance vs. cost

SiD LDC

GLD

4th

The Particle Flow Concept

What is the best way to measure the energy of a jet?

Classical: purely calorimetric

typically 30% e.m. and 70% had. energy

for $\Delta E/E(em) = 10\%/\sqrt{E}$ and $\Delta E/E(had) = 50\%/\sqrt{E}$

 $\rightarrow \Delta E/E(jet) \sim 45\%/\sqrt{E}$

PFlow: combine tracking and calorimetry

typically 60% charged, 30% em(neut), 10% had(neut) need to separate charged from neutral in calorimeter!

momentum resolution negligible at ILC energies

→ Δ E/E(jet) ~ 20%/ \sqrt{E} in principle (for ideal separation)

→ Δ E/E(jet) ~ 30%/ \sqrt{E} as a realistic goal

PFlow has further advantages: tau reconstruction leptons in jets

→ talk by S. Yamashita multi-jet separation (jet algorithms...)

SiD

Design philosophy

- Aim for SiW calorimeter with best possible resolution
- Keep radius small to make this affordable
- Compensate by high Bfield (5 T) and very precise tracking (Si)
- Fast timing of Silicon to suppress background

LDC

Design philosophy

- Fine resolution calorimeter for particle flow
- Gaseous tracking for high tracking efficiency and redundancy
- Large enough radius and high enough B-field (B=4T) to get required momentum resolution

GLD

Design philosophy

- Large radius for particle flow optimisation
- Gaseous tracking for high tracking efficiency and redundancy
- Fine grained Scintillatortungsten calorimeter
- Moderate B-filed (3 T)

4th

Design philosophy:

- Pixel Vertex (PX) 5-micron pixels
- TPC (like GLD or LDC) with silicon strips on outer radius
- Crystal dual-readout ECAL
- Triple-readout fiber HCAL: scintillation/Cerenkov/neutron (new)
- Muon dual-solenoid geometry (new), with ATLAS drift tubes.

 \rightarrow talk by J. Hauptman

Shoot-out or Complementarity?

A Linear Collider cannot increase luminosity with more IR's

→ More than one detector has to be better justified than previously

Two fast switchable IR's with two detectors will bring us

- more redundancy for challenging technologies
- realization of complementary choices
- · possibility for healthy competition and cross check results
- collaborations of a more reasonable size

Most of us (including myself) want two IR's with two detectors!

Detector R&D

Having detector concepts on paper does not necessarily mean they can be built

Have seen a lot of 'small-scale' R&D with limited funding in the past Good progress towards proof-of-principle of technologies

With the (fortunately) tight GDE schedule, we need to

- move towards R&D more focused towards subsystems in concepts
- move from small-scale prototypes to larger system tests
- implement necessary infrastructure for these tests

Many subsystems are chosen by more than one concept! We don't need (and can't afford) 'concept-specific' R&D where unnecessary

Detector R&D

Worldwide Study has implemented a Detector R&D panel to

- keep a register of ongoing R&D work
- produce a report with identified priority-1 topics and review of funding situation

Draft document exists:

→ Report by H. Weerts

ILC Detector Research and Development Status Report and Urgent Requirements for Funding

6th January 2006

Editors: J-C Brient¹³, CJS Damerell⁴², R Frey³⁹, HongJoo Kim²⁷, W Lohmann¹², D Peterson¹¹, Y Sugimoto²⁵, T Takeshita⁴⁵, H Weerts² Subdetector systems

Luminosity, energy, polarisation (LEP)

- Vertex detector systems

 - Tracking systems (gaseous)
 - Tracking systems (silicon)
 - Calorimetry 2.5
 - Muon tracking 2.6
 - 2.7 Particle ID
 - 2.8 DAQ and detector control system
 - Electromagnetic interference (EMI)
 - 2.10 Detector solenoid magnet

R&D collaborations

Report identified (currently) ~70 R&D projects many of which are Priority 1

For many sub-systems international R&D collaborations are in place. e.g.

CALICE - R&D towards a particle flow calorimeter

LC-TPC - R&D towards a high-resolution TPC

SiLC - R&D towards new Silicon detectors and Readout

LCFI, CMOS, DEPFET - R&D towards an ILC vertex detector

Forward Calorimetry

R&D infrastructure

In the coming years, intensive test-beam program is needed

Apart from the beams themselves a common infrastructure for measurements of individual groups is needed

- Large Bore Magnets
- Beam telescopes
- 'Universal' calorimeter stack
- 'Universal' TPC field cage
- ...

Recent success in providing such infrastructure: EUDET

EUDET

EU funded 4-year program ('Integrated Infrastructure Initiative') to improve infrastructure for ILC detector R&D total budget 21.5M€, EU-funded: 7M€

Coordinating Lab: DESY - Participants from all over Europe Magnet from Japan (good example... more of that, please)

Workpackages on

- Testbeam Infrastructure
- Tracking Infrastructure
- Calorimetry Infrastructure
- Common tasks (Software, Computing, Chip-Design)

This infrastructure is open to the world!

Software

Simulation and Analysis Software essential for

- updating the physics case
- optimizing the overall design
- comparing and benchmarking designs
- simulate prototypes
- analyse TB data

We cannot afford 'regional' software!

LCIO as common data model is successful steps towards global ILC software - shows that it can work!

Simulation, Reconstruction, Analysis: still multitude of programs -> need for more coherent approach

Software

	Description	Detector	Language	IO-Format	Region
Simdet	fast Monte Carlo	TeslaTDR	Fortran	StdHep/LCIO	EU
SGV	fast Monte Carlo	simple Geometry, flexible	Fortran	None (LCIO)	EU
Lelaps	fast Monte Carlo	SiD, flexible	C++	SIO, LCIO	US
Mokka	full simulation – Geant4	TeslaTDR, LDC, flexible	C++	ASCI, LCIO	EU
Brahms-Sim	Geant3 – full simulation	TeslaTDR	Fortran	LCIO	EU
SLIC	full simulation – Geant4	SiD, flexible	C++	LCIO	US
LCDG4	full simulation – Geant4	SiD, flexible	C++	SIO, LCIO	US
Jupiter	full simulation – Geant4	JLD (GDL)	C++	Root (LCIO)	AS
Brahms-Reco	reconstruction framework (most complete)	TeslaTDR	Fortran	LCIO	EU
Marlin	reconstruction and analysis application framework	Flexible	C++	LCIO	EU
hep.lcd	reconstruction framework	SiD (flexible)	Java	SIO	US
org.lcsim	reconstruction framework (under development)	SiD (flexible)	Java	LCIO	US
Jupiter-Satelite	reconstruction and analysis	JLD (GDL)	C++	Root	AS
LCCD	Conditions Data Toolkit	All	C++	MySQL, LCIC	EU
GEAR	Geometry description	Flexible	C++ (Java?)	XML	EU
LCIO	Persistency and datamodel	All	Java, C++, Fortran	-	AS,EU,US
JAS3/WIRED	Analysis Tool / Event Display	All		xml,stdhep, heprep,LClO,	US,EU

from T.Behnke

Physics Studies

Physics case for the ILC has been made in the past

- many worked out examples
- physics case for a up to 1TeV ILC has been demonstrated
- very strong case for 400-500 GeV ILC
- but of course we have to continoulsy answer further questions
- new models arise (in particular for non-standard EWSB)
- continue successful cooperation with our enthusiastic friends from theory
- fill holes and improve on previous studies

Examples:

Higgs self coupling
Intermediate mass Higgs
Strong EWSB/Higgsless models

LHC and ILC

First LHC-ILC report accepted for publication (Phys. Rep.)
Contains state-of-the-art information about LHC-ILC interplay

A different question in the same context now arises:

How do we draw ILC-related conclusions from the arriving LHC data?

physics:

- need LHC+ILC+Theory effort to work on implications of LHC data
- play different scenarios
- how can we infer e.g. best ILC energy and upgrade ptah from first LHC data?

strategy:

- need a basis for decisions on ILC
- cannot be made by LHC experiments nor ILC community alone
- start to think a about global process (ICFA?)

Studies are very active!

ALCPG Snowmass Aug 05

ECFA Vienna Nov 05

ACFA Daegu Jul 05

The 8th ACFA Workshop on Physics and Detector at the Linear Collider

- + meetings of concept studies
- + specialized meetings
- + R&D collaborations

Let's break the symmetry

