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Experimental Overview

K. Desch ¢ University of Freiburg ¢ 09/03/2006

* High Resolution Detectors - Why does it matter?
* Detector Concepts

* Component R&D + Infrastructure

* Physics Studies

* LHC+ILC: Facing the first LHC data



The Ideal ILC Detector
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The Ideal ILC Detector
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= o the best we could hope for:

22 .

@ 125 pi+ 1 211 59 1.690 -0.865 -1.257 2.281 0.140

126 pi- 1 -211 59 1.955 -0.869 -1.646 2.703 0.140
127 (eta) 11 221 59 2.814 -1.261 -2.331 3.904 0.547
128 pi- 1 -211 60 0.065 0.005 0.044 0.160 0.140
129 pi+ 1 211 60 0.475 -0.601 -1.026 1.288 0.140
130 pi+ 1 211 62 1.478 -0.729 -1.135 2.006 0.140
131 (piO) 11 111 62 8.427 -5.137 -8.188 12.824 0.135

" 132 nu_taubar 1 -16 63 8.732 -5.586 -7.281 12.667 0.000

a 133 (tau-) 11 15 63 16.252 -7.858 -13.819 22.803 1.777

9 134 (D*0) 11 423 63 35.949 -20.857 -31.248 52.036 2.007

Y 135 pi- 1 -211 65 -0.606 -2.085 -2.852 3.588 0.140

g. 136 pi+ 1 211 65 -2.509 -8.867 -10.402 13.898 0.140

© 137 pi+ 1 211 66 -0.514 -1.198 -1.532 2.017 0.140

5 138 (pi0) 11 111 66 -1.021 -6.020 -6.541 8.949 0.135

g 139 pi+ 1 211 68 -0.233 -1.549 -1.620 2.258 0.140

5 140 (piO) 11 111 68 -3.732 -13.740 -13.880 19.884 0.135

= 141 gamma 1 22 71 -2.608 -10.515 -10.281 14.935 0.000

< 142 gamma 1 22 71 -1.547 -6.002 -5.765  8.465  0.000

£

2 :

0 and then use our knowledge of physics o reconstruct

O . .

i quarks, gluons, charged leptons, neutrinos(!) as good as possible

X



The Ideal ILC Detector
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To do so, the detector has to provide

» precision tracking for charged particles

* highly granular calorimetry (separate charged from neutral,
measure heutral)

* precision vertex detector (identify heavy flavours b ,c 1)

» capability to identify muons

* 4n-¢ angular coverage

- precise diagnostics of initial state (luminosity, energy, polarisation)

- cope with backgrounds

K. Desch Experimental Overview 09/03/06 p. 4



Why does it matter?
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Why does it matter?
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Calorimetry:

need to measure sub-fb
cross sections
in hadronic final states!
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Why does it matter?
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Flavour ID:

ILC conditions allow for
unprecedented flavour

tagging -

only if we manage to
build an unprecedented
vertex detector

events per 0.05%0.05
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Why does it matter?

Tau lepton reconstruction:

Sometimes it's not enough
to know that it was a tau

Need to reconstruct its
decay mode to measure
its polarisation

charged pion _r

I if'f.i{:tm.r,c_.#h it L0 T\Rﬂ‘

Tau-Leptons challenge the
whole detector!



Why does it matter?

If we talk about ‘cosmic connections’ we have to talk about
beamstrahlung, crossing angles, rad-hard calorimeters and all that...
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Why does it matter?

Precise measurement of s Threshold scans
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Luminosity (spectrum), 6

Beam Energy

Polarisation !

has direct impact on the physics 2
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Why does it matter?

High resolution efficient detector increases the effective luminosity
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o(stat) = sqri(esS+epB)/eS ~ 1/sqri(L)
o(syst) = sqrt(AS?+AB2)/S ~ B/S indep. of L

0.8 T T

-

Better resolution, efficiency, and AN _

acceptance mean M _-
- need less luminosity

for the same significance _

- lowering systematic boundary 05 |

going from 60% to 30%
almost doubles
effective luminosity

K. Desch Experimental Overview 09/03/06 p. 11
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Detector Design(s)

We do not start today to think about all of that...

But we need to
- optimize the different designs

- compare complementary approaches

- increase the amount of detector R&D

GDE requested costed concept reports by end 2006

Show that required performance can be reached at known cost
Concept should trigger a focused detector R&D

Concepts are not proto-collaborations!

World-wide participation in each concept desirablel
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Detector Design(s)

Choices:

Size: large - medium - small (B-field)
Calorimetry: Particle Flow or E-resolution?
Tracking: Silicon or Gaseous?

Muons: instrumented iron or double solenoid?

Common: Optimization:
vertex detector performance vs. cost
forward instrumentation

Lt
,;{;__.-_‘ Sl AR




The Particle Flow Concept

What is the best way to measure the energy of a jet?
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Classical: purely calorimetric
typically 30% e.m. and 70% had. energy
for AE/E(em) = 10%/~E and AE/E(had) = 50%/+E
— AE/E(jet) ~ 45%/E

PFlow:  combine ftracking and calorimetry
typically 60% charged, 30% em(neut), 10% had(neut)
need to separate charged from neutral in calorimeter!
momentum resolution negligible at ILC energies
— AE/E(jet) ~ 20%/~E in principle (for ideal separation)
— AE/E(jet) ~ 30%/+E as a redlistic goal

PFlow has further advantages: tau reconstruction
leptons in jets
— talk by S. Yamashita multi-jet separation (jet algorithms...)

K. Desch Experimental Overview 09/03/06 p. 14



SiD
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Design philosophy

e Aim for SiW calorimeter
with best possible resolu-
flon

e [Keep radius small to make
this affordable

e Compensate by high B-
field (5T) and very precise
tracking (Si)

e Fast timing of Silicon to
suppress background

— talk by J. Jaros

K. Desch Experimental Overview 09/03/06 p. 15



LDC

o 2
o O
N ©
o)
UC
~ ©
a8}

Design philosophy

e Fine resolution calorimeter
for particle flow

e Gaseous tracking for high
tracking efficiency and re-
dundancy

e Large  enough  radius [
and high enough B-field @
(B=4T) to get required

momentum resolution

— talk by T. Behnke

K. Desch Experimental Overview 09/03/06 p. 16



GLD
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Design philosophy

e Large radius for particle
flow optimisation

e Gaseous tracking for high
tracking efficiency and re-
dundancy

e Fine grained Scintillator-
tungsten calorimeter

e Moderate B-filed (3T)

— talk by H. Park

K. Desch Experimental Overview 09/03/06 p. 17



4th
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Design philosophy:

* Pixel Vertex (PX) 5-micron pixels

» TPC (like GLD or LDC)
with silicon strips on outer radius

* Crystal dual-readout ECAL

e Triple-readout fiber HCAL.:
scintillation/Cerenkov/neutron (new)

* Muon dual-solenoid geometry (new),
with ATLAS drift tubes.

— talk by J. Hauptman

K. Desch Experimental Overview 09/03/06 p. 18
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Shoot-out or Complementarity?

A Linear Collider cannot increase luminosity with more IR's

— More than one detector has to be better justified than
previously

Two fast switchable IR's with two detectors will bring us

- more redundancy for challenging technologies

- realization of complementary choices

» possibility for healthy competition and cross check results
- collaborations of a more reasonable size

Most of us (including myself) want two IR's with fwo detectors!
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Detector R&D

Having detector concepts on paper does not necessarily mean
they can be built

Have seen a lot of 'small-scale’ R&D with limited funding in the past
Good progress towards proof-of-principle of technologies

With the (fortunately) tight GDE schedule, we need to

- move towards R&D more focused tfowards subsystems in concepts
- move from small-scale prototypes to larger system tests

- implement necessary infrastructure for these tests

Many subsystems are chosen by more than one concept!
We don't need (and can't afford) ‘concept-specific’' R&D
where unnecessary
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Detector R&D

Worldwide Study has implemented a Detector R&D panel to

- keep a register of ongoing R&D work

- produce a report with identified priority-1 fopics and
review of funding situation

Draft document exists:

ILC Detector Research and Development
Status Report and Urgent Requirements for Funding

6th January 2006

Editors: J-C Brient’’, CJS Damerell”, R Frey™, HongJoo Kim’’, W Lohmann'’, D Peterson'’,

. 25 45 2
Y Sugimoto™, T Takeshita™>, H Weerts Subdetector systems

2.1 Luminosity, energy, polarisation (LEP)
2.2 \Vertex detector systems
2.3 Tracking systems (gaseous)
2.4 Tracking systems (silicon)
— Report by H. Weerts ey
2.6 Muon tracking
2.7  Particle ID
2.8 DAQ and detector control system
2.9  Electromagnetic interference (EMI)
2.10 Detector solenoid magnet



)
o
%))
=
@)
|

K. Desch Experimental Overview 09/03/06 p. 22

W
o
©
)
c
©
o

R&D collaborations

Report identified (currently) ~70 R&D projects
many of which are Priority 1

For many sub-systems international R&D collaborations are in place.
e.g.

CALICE - R&D towards a particle flow calorimeter

LC-TPC - R&D towards a high-resolution TPC

SiLC - R&D towards new Silicon detectors and Readout
LCFI, CMOS, DEPFET - R&D towards an ILC vertex detector

Forward Calorimetry



R&D infrastructure
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In the coming years, intensive test-beam program is needed

Apart from the beams themselves a common infrastructure
for measurements of individual groups is needed

- Large Bore Magnets

- Beam telescopes

- 'Universal’ calorimeter stack
- 'Universal’ TPC field cage

Recent success in providing such infrastructure: EUDET

K. Desch Experimental Overview 09/03/06 p. 23



EUDET

EU funded 4-year program (‘Integrated Infrastructure Initiative')
to improve infrastructure for ILC detector R&D
total budget 21.5M€, EU-funded: 7M€
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Coordinating Lab: DESY - Participants from all over Europe
Magnet from Japan (good example... more of that, please)

Workpackages on

- Testbeam Infrastructure

- Tracking Infrastructure

- Calorimetry Infrastructure

- Common tasks (Software,
Computing,
Chip-Design)

This infrastructure is open to the world!

K. Desch Experimental Overview 09/03/06 p. 24



Software

o 2
o O
N ©
o)
UC
~ ©
a8}

Simulation and Analysis Software essential for

- updating the physics case

- optimizing the overall design

- comparing and benchmarking designs
- simulate prototypes

- analyse TB data

We cannot afford 'regional’ software!

LCTIO as common data model is successful steps towards global ILC
software - shows that it can work!

Simulation, Reconstruction, Analysis: still multitude of programs
-> need for more coherent approach

K. Desch Experimental Overview 09/03/06 p. 25
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Software

Description Detector Language ||O-Format|Region
Simdet fast Monte Carlo TeslaTDR Fortran [StdHep/LCIO| EU
SGV fast Monte Carlo simple Geometry, flexible| Fortran |None (LCIO)| EU
Lelaps fast Monte Carlo SiD, flexible C++ SIO, LCIO us
Mokka full simulation — Geant4 | TeslaTDR, LDC, flexible C++ ASCIL, LCIO | EU
Brahms-Sim Geant3 — full simulation TeslaTDR Fortran LCIO EU
SLIC full simulation — Geant4 SiD, flexible C++ LCIO us
LCDG4 full simulation — Geant4 SiD, flexible C++ SI0, LCIO us
Jupiter full simulation — Geant4 JLD (GDL) C++ Root (LCIO) AS

reconstruction framework
Brahms-Reco (most complete) TeslaTDR Fortran LCIO EU
q reconstruction and analysis :
Marlin T e Flexible C++ LCIO EU
hep.lcd reconstruction framework SiD (flexible) Java SIO us
- reconstruction framework . .
org.lcsim ks renn, SiD (flexible) Java LCIO us
Jupiter-Satelitg reconstruction and analysis JLD (GDL) C++ Root AS
LCCD Conditions Data Toolkit All C++ MySQL, LCIQ EU
GEAR Geometry description Flexible C++ (Java?) XML EU
. Java, C++, )
LCIO Persistency and datamodel All Fortran AS,EU,US
. . xml,stdhep,
JAS3/WIRED | Analysis Tool / Event Display All Java heprep.LCIO. US,EU

from T.Behnke
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Physics Studies

Physics case for the ILC has been made in the past

- many worked out examples
- physics case for a up to 1TeV ILC has been demonstrated
- very strong case for 400-500 GeV ILC

- but of course we have to continoulsy answer further questions

- new models arise (in particular for non-standard EWSB)

- continue successful cooperation with our enthusiastic friends
from theory

- fill holes and improve on previous studies

Examples:
Higgs self coupling

Intermediate mass Higgs
Strong EWSB/Higgsless models
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LHC and ILC

First LHC-ILC report accepted for publication (Phys. Rep.)
Contains state-of-the-art information about LHC-ILC interplay

A different question in the same context now arises:
How do we draw ILC-related conclusions from the arriving LHC data?

physics:
- need LHC+ILC+Theory effort to work on implications of LHC data
- play different scenarios

- how can we infer e.g. best ILC energy and upgrade ptah from first
LHC data?

strategy:
- need a basis for decisions on ILC
- cannot be made by LHC experiments nor ILC community alone
- start to think a about global process (ICFA?)



Studies are very activel

ALCPG Snowmass Aug 05 _ ACFA qugu Jul 05

The 8th ACFA Workshop on Physics
and Detector at the Linear Collider
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+ specialized meetings
+ R&D collaborations
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Let's break the symmetry
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LCWS 06
2006 International Linear Collider Workshop

Indian Institute of Science, Bangalore, India
March 9-13, 2006



