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MOTIVATION
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● Dark photon experiment, electron on target
● To be built at the ELSA accelerator at University of Bonn

● Low signal expected, want to measure 4x1014 electrons
● For more information see T 64.8, directly after this talk, but different sessions
● Want sophisticated, fast trigger

→ Use hardware accelerated algorithms for the trigger → live tracking
● This talk: pattern recognition with hardware-accelerated neural network

Detector layers

Target

e-
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HARDWARE: XILINX VERSAL /  VCK190
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● Evaluation board VCK190
● Versal VC1902 Adaptive Compute Acceleration Platform (ACAP)
● 400 AI processors (“AI engines”), nearly 2M logic cells (FPGA),

2k DSPs, Arm CPU, Arm RPU
Board with
● 8 GB DDR4 RAM
● QSFP28 for 100 Gbit Ethernet

Source: Xilinx, https://www.xilinx.com/products/boards-and-kits/vck190.html
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BUILDING NEURAL NETWORK INPUT
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● Using Timepix3 chip → ToT, ToA, Position for each hit → read out with ACAP
● Build a graph…
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BUILDING NEURAL NETWORK INPUT
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Node = Hit
with features:
ToA, ToT, Pos.

Edges =
possible 

connections
(hits between two 

adjacent layers)
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GNN FOR PATTERN RECOGNITION
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● Classify edges: true edge or false edge
→ Retrieve original track (pattern recognition)

● Use Interaction Network* which is a type of Graph Neural Network (GNN)
● Uses graph (hits and possible connections) as input
● Input graph is not the neural network (which can also be shown as a graph)
● GNNs generalization of other NNs: data is not 2D or 1D anymore

* described in DeZoort et al. (2021)

https://doi.org/10.1007/s41781-021-00073-z
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STRUCTURE OF THE GNN
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Readout & build graph (already on ACAP)

1) Loop possible connections:
● Run neural network “R1”

2) Loop hits:
● Rearrange output of “R1”

→ Run neural network “O”
3) Loop possible connections:

● Rearrange output of “O”
→ Run neural network “R2”
& Sigmoid/apply threshold

Detector/Timepix3

Classified edges

Classically:
Executed sequentially
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IMPLEMENTATION FOR ACAP — PIPELINING
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Readout & build graph (already on ACAP)

1) Loop possible connections:
● Run neural network “R1” → AIE 1

2) Loop hits:
● Rearrange output of “R1” → AIE 2

→ Run neural network “O” → AIE 3
3) Loop possible connections:

● Rearrange output of “O” → AIE 4
→ Run neural network “R2”
& Sigmoid/apply threshold

Detector/Timepix3

→ AIE 5
Classified edges
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IMPLEMENTATION FOR ACAP — PARALLEL EXECUTION
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AI Engines of VCK190:
● Highly parallelized: SIMD VLIW

Source: Xilinx UG1079
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IMPLEMENTATION FOR ACAP — PARALLEL EXECUTION
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AI Engines of VCK190:
● Highly parallelized: SIMD VLIW

Single instruction, multiple data

Very long instruction word

Source: Xilinx UG1079
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IMPLEMENTATION FOR ACAP — PARALLEL EXECUTION
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AI Engines of VCK190:
● Highly parallelized: SIMD VLIW
● VLIW → Simultaneous execution of:

● Loading data
● Storing data
● Computations (scalar and vector → SIMD)

● Running at 1 GHz
● 8 Accumulators for 32b floating-point operations

→ Work on 8 possible connections simultaneously
while loading data, moving data & incrementing pointers…

Source: Xilinx UG1079
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GNN FOR PATTERN RECOGNITION

ToAStart ToAEnd ToTStart ToTEnd

1) Loop possible connections:
● Run neural network “R1” → AIE 1

18

Con. 1:
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GNN FOR PATTERN RECOGNITION

Con. 2:
Con. 3:
Con. 4:
Con. 5:
Con. 6:
Con. 7:
Con. 8:

ToAStart ToAEnd ToTStart ToTEnd

ToAStart ToAEnd ToTStart ToTEnd

ToAStart ToAEnd ToTStart ToTEnd

ToAStart ToAEnd ToTStart ToTEnd

ToAStart ToAEnd ToTStart ToTEnd

ToAStart ToAEnd ToTStart ToTEnd

ToAStart ToAEnd ToTStart ToTEnd

Con. 1: ToAStart ToAEnd ToTStart ToTEnd

1) Loop possible connections/8:
● Run neural network “R1” → AIE 1

...with 8 accumulators!

19
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GNN FOR PATTERN RECOGNITION
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Con.10:
Con.11:

Con. 12:
Con.13:
Con.14:

Con. 15:
Con. 16:

Con. 9:
ToAStart ToAEnd ToTStart ToTEnd

ToAStart ToAEnd ToTStart ToTEnd

ToAStart ToAEnd ToTStart ToTEnd

ToAStart ToAEnd ToTStart ToTEnd

ToAStart ToAEnd ToTStart ToTEnd

ToAStart ToAEnd ToTStart ToTEnd

ToAStart ToAEnd ToTStart ToTEnd

ToAStart ToAEnd ToTStart ToTEnd

...with 8 accumulators!

1) Loop possible connections/8:
● Run neural network “R1” → AIE 1
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CURRENT STATUS & OUTLOOK
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● Status: Implemented, currently improving performance
● Targeting  O(µs) to classify each graph
● 32b floating-point → Quantize the NN? Use 8b integer, x16 speedup
● Could also include FPGA-part of ACAP
● Only using 5 AI engines! Space to go faster or do more



Patrick Schwäbig, 2022 DPG Spring Meeting Heidelberg03/23/2022

CURRENT STATUS & OUTLOOK

22

● Status: Implemented, currently improving performance
● Targeting  O(µs) to classify each graph
● 32b floating-point → Quantize the NN? Use 8b integer, x16 speedup
● Could also include FPGA-part of ACAP
● Only using 5 AI engines! Space to go faster or do more:

● Build tracks
● Fit tracks, e.g. using a Kalman filter:

AIE 1 AIE 2 AIE 3 AIE 4 AIE 5



Thanks for your attention!

Questions?


