Latest Developments in the Search for Supersymmetry with Tau Leptons at the ATLAS Experiment

Oliver Ricken, Physikalisches Institut, University of Bonn

DPG Frühjahrstagung, Münster, 29-03-2017

Bonn-Cologne Graduate School of Physics and Astronomy

Status after 2015 Data Taking @ 13 TeV

- Two-step gluino-gluino decays
 Tailored towards tau final states
- GMSB alongside

 $\widetilde{g}\widetilde{g}$ production, $\widetilde{g} \rightarrow qq\tau v \widetilde{\chi}^0$ / $qq\tau \tau \widetilde{\chi}^0$ / $qqv v \widetilde{\chi}^0$ 1τ+2τ observed limit (ected limit $1\tau + 2\tau$ expected limit (±1 σ_{au} expected limit ATLAS Run-1 exclusion √s=13 TeV, 3.2 fb⁻¹ All limits at 95% CL 800 600 400 200 1400 800 1000 1200 600 1600 1800 $m_{\tilde{a}}$ [GeV] Run-2 publication: Eur. Phys. J. C76 (2016) 783 universität**bon**

Run-1 publications:

Eur.Phys.J. C72 (2012) 2215 JHEP 09 (2014) 103 JHEP 10 (2015) 054

29/03/2016

Analysis Setup

- Close collaboration with University of Bergen
- OneTau channel:
 - Low/medium gluino mass regime
- DiTau channel:
 - High gluino mass regime
- Define phasespace regions
 - CRs (Top, W, Z, QCD-Multijet), obtain scaling factors
 - VRs, validate scaling factors
 - SR, apply scaling factors
- Fitting procedure: HistFitter
 - Simultaneous multi-region fit
 - Multi-bin shape fit in SRs, single bin in CRs

29/03/2016

Background Estimation

	Top/W kinematic	Top/W True Tau	Top/W Fake Tau	$\boxed{\qquad \qquad Z \to \nu\nu}$	$Z \to \tau \tau$		
Trigger plateau	$\begin{array}{c c} E_T^{\rm miss} > 180 {\rm GeV} \\ p_T^{J1} > 120 {\rm GeV} \\ N_{\rm jet} > 1 \\ p_T^{J2} > 25 {\rm GeV} \end{array}$						
QCD-Multijet suppression	$ \begin{array}{ c c c } & \Delta \phi(p_T^{J1}, p_T^{\text{miss}}) > 0.4 \\ & \Delta \phi(p_T^{J2}, p_T^{\text{miss}}) > 0.4 \\ & \Delta \phi(p_T^{J2}, p_T^{\text{miss}}) > 0.4 \\ & & \end{array} $						
Taus	$N_{\tau}^{\text{medium}} = 0$ $N_{\tau}^{\text{medium}} = 1$				$N_{\tau}^{\text{medium}} = 2, \text{OS}$		
Additional jets	$ $ $N_{\rm jet}$	> 2		_	_		
Light leptons	$N_l = 1$	$N_l = 0$	$N_l = 1$	$N_l = 0$			
W/Top separation		= 0					
CR cuts		_					
	$m_T^l < 100 \text{GeV}$ — — — — — — — — —	$ \begin{array}{c} & - & \\ m_T^{\tau} < 80 \text{GeV} \\ & - & $	$m_T^l < 100 \text{GeV}$	$ \begin{vmatrix} & \\ 100 {\rm GeV} \leq m_T^\tau &< 200 {\rm GeV} \\ & \\ & \\ \Delta \phi(p_T^{J1}, p_T^{\rm miss}) > 2.0 \\ \Delta \phi(p_T^{\tau_1}, p_T^{\rm miss}) > 1.0 \\ E_T^{\rm miss}/m_{\rm eff} > 0.3 \end{vmatrix} $	$m_T^{\tau_1} + m_T^{\tau_2} < 150 \text{GeV} m_{T2} < 70 \text{GeV}$		
ATLAS Work In Progress	Р	hasespac	e definitio	ns: CRs			

- Trigger on MET, additional cuts: general event quality
- Orthogonality: SRs (red), CRs (blue) 29/03/2016 DPG Münster 2017, T77.3 -- Oliver Ricken

universität**bonn**

Background Estimation

	$N_{\tau}^{\rm reco} = 0$	$N_{\tau}^{ m reco} = 1$	$N_{\tau}^{ m reco} \geq 2$	Scaling	Value
	(kinematic CRs)	(True/Fake CRs)	(VRs/SRs)	$\omega_{\rm kin}({\rm top})$	0.99 ± 0.01
$N_{\tau}^{\mathrm{true}} = 0$	$ $ $\omega_{ m kin}$	$\omega_{ m kin} imes \omega_{ m fake}$	$\omega_{ m kin} imes \omega_{ m fake} imes \omega_{ m fake}$	$\omega_{\rm true}({\rm top})$	1.09 ± 0.02
$(W \to \tau \nu, t\bar{t})$				$\omega_{ m fake}(m top)$	1.09 ± 0.13
$N_{\tau}^{\mathrm{true}} = 1$		$\omega_{ m kin} imes \omega_{ m true}$	$\omega_{\rm kin} imes \omega_{ m true} imes \omega_{ m fake}$	$\omega_{ m kin}(W)$	0.89 ± 0.06
$(W \to \tau \nu, t\bar{t})$				$\omega_{ m true}(W)$	1.05 ± 0.02
$N_{\tau}^{\mathrm{true}} = 2$		$\omega_{\rm kin} imes \omega_{ m true}$	$\omega_{\rm kin} imes \omega_{ m true} imes \omega_{ m true}$	$\omega_{ ext{fake}}(W)$	0.78 ± 0.14
$(tar{t})$				$\omega_{Z \to \tau \tau}$	1.00 ± 0.10
ATLAS				$\omega_{Z \to \nu \nu}$	1.51 ± 0.21

Work In Progress

ATLAS Work In Progress

- No systematic uncertainties taken into account
- QCD-Multijet not included in plots or fits

29/03/2016

Background Estimation – Top-CRs

 Good agreement

Background Estimation – W-CRs

 Good agreement

Background Estimation – Z-CRs

 Good agreement

DPG Münster 2017, T77.3 -- Oliver Ricken

SR Design

	OneT	Tau SRs	DiTau SRs				
	Compressed	Medium Mass	Compressed	High Mass			
Trigger plateau	$E_T^{\text{miss}} > 180 \text{GeV}$						
	$p_T^{J1} > 120 \mathrm{GeV}$						
	$N_{ m jet} > 1$						
	$p_T^{J2} > 25 \mathrm{GeV}$						
QCD-Multijet	$\Delta \phi(p_T^{J1}, p_T^{\text{miss}}) > 0.4$						
suppression	$\Delta \phi(p_T^{J2}, p_T^{ ext{miss}}) > 0.4$						
Taus	$N_{\tau}^{\text{medium}} = 1$		$N_{ au}^{ ext{medium}} \geq 2$				
	$p_T^{\tau_1} < 45 \mathrm{GeV}$	$p_T^{ au_1} > 45 \mathrm{GeV}$					
	$m_T^{\tau_1} > 80 \mathrm{GeV}$	$m_T^{\tau_1} > 250 \mathrm{GeV}$		$m_T^{\tau_1} + m_T^{\tau_2} > 350 \mathrm{GeV}$			
			$m_{T2} > 60 \mathrm{GeV}$				
Jets		$ N_{\rm jet} > 4$	—	_			
General event properties	$E_T^{\text{miss}} > 400 \text{GeV}$			_			
		$H_T > 1000 \mathrm{GeV}$	$H_T < 1100 \mathrm{GeV}$	$H_T > 1100 \mathrm{GeV}$			
	_		$\left\ \sum m_T^{\text{taus,jets}} > 1600 \text{GeV} \right\ $	_			

ATLAS Work In Progress Phasespace definitions: SRs

• Orthogonality: SRs (blue), CRs (red)

29/03/2016

Expected Limits – Combined Phasespace

 Combination of OneTau (Comp., MM) and DiTau (Comp. HM) channels

29/03/2016

Expected Limits – Combined Phasespace

- Combination of OneTau (Comp., MM) and DiTau (Comp. HM) channels
- Fully orthogonal combination even more powerful

29/03/2016

DiTau Signal Region Shape Fit – Intro

- DiTau OpenShape SR
- Binning chosen to have enough statistics everywhere

29/03/2016

- Shape fit (in $m_T^{\tau_1} + m_T^{\tau_2}$) better than 1-bin fits
- To Do:
 - Further improve OpenShape SR (based on HM-SR)
 - Develop OneTau Shape fit SR

29/03/2016

- DiTau Shape Fit based on OpenShape SR
 - Simultaneous fit in 7 bins of $m_T^{\tau_1} + m_T^{\tau_2}$
 - Does not consider OneTau SRs (!)
- Exclusion almost compatible

- Shape fit change CLs values
- >1 → higher exclusion power
- Exclusion can become stronger

CLs comparison Shape Fit vs. 1-bin Combination

29/03/2016

Take-Home Message

- Larger statistics (36.5 fb⁻¹ vs. 3.2 fb⁻¹) allow for new approaches
- Already implemented:
 - Fully orthogonal phasespace regions
 - <u>One</u> set of CRs for <u>all</u> SRs
 - Statistical combination in final fit
 - Good agreement between data and MC
 - Shape fits (multi-bin fits) in SRs
 - Improved limits
 - Stronger exclusions
 - Semi-data-driven QCD-Multijet estimate for all channels
- Yet to come / next steps
 - Shape fits in CRs
 - VR design

Backup

Expected Limits – OneTau Channels

Expected Limits – DiTauChannels

Expected Limits – One/DiTau Combination

29/03/2016

29/03/2016