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CHAPTER 1

Introduction

Processes, that are connected by logic and obey universal laws always fascinated me. While studying
physics, many topics sparked my interest, but the most interesting topic was particle physics. The
sheer simplicity and beauty of the Standard Model that could explain many phenomena, by only using
a set of elementary particles and describing their interactions; it was captivating.
A few years ago, I watched a video that YouTube had recommended to me. In the video, an AI

was programmed with the objective to complete the famous first level of Super Mario [1]. I was
astonished that the program was able to archive its goal without further input by the user. I already
liked programming, therefore the whole concept fascinated me.
Traditionally in particle physics, collision experiments are used in order to create new particles.

The four experiments at LHC together produce about 25 Gb/s (gigabyte per second) of data [2]. Due
to the large quantity of data produced, a wide range of applications for machine learning are possible
and at times necessary. Neural networks are used to distinguish between signal and background events
and adversarial neural networks are used to decrease the influence of systematic errors [3]. However,
in this work, the impact of different variables on the performance of a Neural Network discriminant
is tested. Therefore instead of the commonly used variables, Lorentz invariant variables are used to
differentiate between signal and background events in the tZq production process.
The following chapters give brief introductions into the basic topics. In chapter 2, the standard

model is explained followed by an overview over the LHC and the ATLAS Detector in chapter 3.
Moreover, a closer look is taken on variables and the reconstruction process. Chapter 4 introduces the
concept of machine learning, but mainly focuses on neural networks. In chapter 5, the tZq process as
well as different sets of variables that can be used to train a neural network are introduced. Finally,
the set-up and training process with Lorentz invariant variables of a neural network is described in
chapter 6. After optimizing said neural network, a comparison between the training with kinematic
variables is made.
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CHAPTER 2

Particle Physics

2.1 Standard Model

In the 1950s and 1960s, because of huge improvements of particle accelerators, physics was confronted
with a problem. Numerous particles were discovered that seemed to be elementary particles, leading
people to call the whole collection a "particle zoo". This contradicted the idea of elementary particles
being the smallest components in building matter. An attempt was made by Murray Gell-Mann and
Yuval Ne’eman to classify the several hundred resonances and particles by forming multiplets based on
their intrinsic properties. This eightfold way is an organizational scheme which classifies mesons and
baryons. In addition, it has predicted previously unknown particles such as the Ω baryon. This gave
raise to the quark model, which postulated that all baryons and mesons consist of smaller constituents,
the quarks.

The Standard Model (SM) is a truly remarkable success of modern physics and the state-of-the-art
model used in particle physics. All known elementary particles and most forces are described by it.
Even if it is not able to explain some questions, most notable the nature of dark matter, it is the most
comprehensive model to date. Most predictions made, based on this model, have been proven correct
experimentally in the past decades, most recently the discovery of the Higgs Boson.

The SM describes Bosons and Fermions. Fermions are all matter particles and Bosons are the force
carriers that allow Fermions to interact with each other. An overview of the SM is displayed in figure
2.1.

2.1.1 Bosons

The SM describes five different Bosons, which are integer spin particles. Four of them are gauge bosons
and the remaining is the Higgs boson. The gauge bosons act as force carrier particles that mediate the
different fundamental interactions: electromagnetic, strong and weak forces. The gravitational force is
neglected due to its relative strength to the other forces at the energy scale of particle physics.

The electromagnetic force affects all electrically charged particles, and operates on an infinite range.
The mediator particle is the photon γ. In contrast to electromagnetism, the weak force is confined
to small distances. Most commonly, the weak force is encountered in decay processes such as the
β-decay. All fermions of the SM can interact weakly, either via a charged current, using the W±-boson
as a mediator; or via a neutral current, using the Z-boson as mediator. The strong force is the strongest
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Chapter 2 Particle Physics

Figure 2.1: Overview of the SM [4]. In the three left columns, the different generations of fermions, are listed in
ascending order. On the right of the fermions the bosons are listed.

of the fundamental forces. However, it is also the most confined force with a range of 10−15 m. The
strong force only applies to color charged particles. The mediator particle of the strong interaction, is
the gluon g. It is color charged and therefore able to selfinteract.

2.1.2 Fermions

Fermions, which are half integer spin particles, can be separated into two groups: leptons and
quarks. Both are further divided into three generations. The different generations of the leptons
consists of the electron e− and the electron neutrino νe (first generation), the muon µ− and the muon
neutrino νµ (second generation) and the tau τ− and tau neutrino ντ (third generation). Leptons do not
have a color charge and therefore can not interact strongly. Moreover neutrinos are do not carry a
electric charge in contrast to the other leptones that have a charge of −1 e, e being the elementary
charge (e = 1.602176634 × 10−19 C [5]). Therefore charged leptons can interact via the weak and
electromagnetic force. Neutrinos only interact weakly.
Each generation of quarks consists of one up-type quark and one down-type quark. The up-type

quarks are the up-quark u (first generation), charm-quarks c (second generation) and top-quark t
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2.2 Four-Vectors

(third generation), the down-type quarks are the down-quark d (1st generation), strange-quark s (2nd
generation) and bottom-quark b (3rd generation). Up-type quarks have a electric charge of 2

3 e, while
down-type quarks have a charge of − 1

3 e. Due to their electric and color charge, quarks can interact
either electromagnetically, weakly or strongly.

2.2 Four-Vectors

An important concept for particle physics is the Minkowski space. In addition to the three space
coordinates of the Euclidean space, vectors in the Minkowski space have an additional time dimension.
Therefore, vectors in the Minkowski space consist of one time-like, which is the zeroth component, and
three space-like components, being the first second and third component. Thus, a typical four-vector
in covariant form is shown in equation 2.1a. There is also a contravariant form that is displayed in
equation 2.1b.

aµ =
©«

ct
x
y

z

ª®®®¬ , µ ∈ [0, 1, 2, 3] (2.1a)

aµ = (ct, x, y, z) (2.1b)

An often used 4-vector in particle physics is the four-momentum. The covariant form is presented in
equation 2.2, where E is the energy, px , py pz are the momenta in the x-, y- and z-direction and c is
the speed of light (c = 299 792 458 × 108 m/s [5]).

pµ =
(

E
c
, px, py, pz

)
(2.2)

Natural units are often utilized in particle physics to simplify equations. By defining c = 1 the
four-momentum from equation 2.2 becomes:

pµ =
(
E, px, py, pz

)
(2.3)

Another relation, that is often used, is called the energy-mometum relation. Using natural units, the
energy-mometum relation is defined as shown in equation 2.4.

E2
= p2

+ m2 (2.4)

2.3 Scalar Products

The scalar product in the Minkowski space can be defined as the matrix shown in equation 2.5a. The
scalar product between two arbitrary vectors a and b can be written as is shown in equation 2.5b.

η(eµ, eν) = ηµν =
©«
1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

ª®®®¬ (2.5a)

5th February 2020 15:17 5



Chapter 2 Particle Physics

〈a|b〉 = η(aµ, bν) = ηµνaµbν = a0 · b0 − a1 · b1 − a2 · b2 − a3 · b3 = a0 · b0 − ®a · ®b (2.5b)

2.4 Lorentz Invariance

The ability to describe physical events in different frames of reference is essential for understanding
phenomena. In classical physics with reference frames, that are non-relativistic, Galilean transforma-
tions can be used. However, these transformations assume an absolute time, defining the identity t = t’.
In contrast, the theory of relativity shows, that at high speeds time depends on the frame of reference.
Therefore, another form of transformation has to be used, which is called Lorentz transformation.
variables that describe these transformations are the β and the Lorentz factor γ, which are defined in
equation 2.6.

β =
v

c
(2.6a)

γ =
1√

1 −
v2

c2

=
1√

1 − β2
(2.6b)

An example of a Lorentz transformation is given in equation 2.7a where the observer is boosted
along the x-axis with velocity vx . Equation 2.7b shows the Lorentz transformation in matrix form that
can perform the x-boost on a four-vector.

t ′ = γ(t − β · x)
x ′ = γ(x − vx · t)
y′ = y

z′ = z

(2.7a)

Λ
ν
µ =

©«
γ −γ · β 0 0
−γ · β γ 0 0

0 0 1 0
0 0 0 1

ª®®®¬ (2.7b)

A quantity that is not changed by a Lorentz transformation is called Lorentz invariant. This quantity
has the same attributes in every frame of reference. Examples of Lorentz invariant properties are the
speed of light, the mass and the charge.
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CHAPTER 3

The Atlas Detector

The Organisation européenne pour la recherche nucléaire (CERN), which translates to the European
Organization for Nuclear Research, operates the largest particle physics laboratory in the world [6]. It
is located on the French-Swiss border near Geneva, and has been accelerating science for nearly 70
years. Several achievements which are crucial to particle physics have been made [7]. By constantly
upgrading the CERN complex, new energy scales are archieved and therefore the understanding of
particle physics is broadened.
The Large Hadron Collider (LHC) is the latest particle collider in the CERN complex. With a

circumference of nearly 27 km [8], it is the largest particle collider in the world. Protons archive 11 245
revolutions per second [8] when they are accelerated to their maximum velocity which is close to the
speed of light. A total of 9 593 magnets make sure that the bunches of protons, which have a total
energy of 6.5 TeV, stay on the intended path. With its 13 TeV collision energy, the LHC is designed to
test the limits of the standard model. Therefore, 4 detectors at the LHC analyze the manifold particles
that emerge from the proton collisions. These experiments are a toroidal LHC apparatus (ATLAS), A
Large Ion Collider Experiment (ALICE), Compact Muon Solenoid (CMS) and Large Hadron Collider
beauty (LHCb).

Named after the titan that single handedly prevented the sky from crashing into the earth, the ATLAS
detector is just as impressive as the LHC. Being one of the two general-purpose particle detectors
in the LHC, this gigantic machine is built to detect the smallest constituents of matter. The ATLAS
detector weighs about 7 000 tons and measures 46 m in length and 25 m in diameter. This dimensions
as well as the constituents of the ATLAS detector are displayed in figure 3.2. The excavation for the
construction digged up 300 000 tons of rock [10] and 50 000 tons of concrete [10] were used for the
construction.

3.1 Setup

Being an all purpose detector, ATLAS is build to detect a wide range of signals. The ATLAS detector
consists of four major components, each crucial to the detection of different particles: the inner
detector, the calorimeter and the muon spectrometer. Moreover, a strong magnetic field, which is
generated by a system of solenoid magnets, pervades the detector.

5th February 2020 15:17 7



Chapter 3 The Atlas Detector

Figure 3.1: Overview of CERNs accelerator complex [9], laying out the general structure of accelerators. Also
shown is the LHC and the four experiments, ATLAS, ALICE, CMS and LHCb.

3.1.1 Inner detector

The inner detector in ATLAS consists of three parts, the pixel detector, the Semi Conductor Tracker
(SCT) and the Transition Radiation Tracker (TRT). A general overview is displayed in figure 3.3. The
function of this three parts is tracking the trajectory of charged particles. Based on the track and the
magnetic field, the charge, direction and momentum of the particle can be determined.

The pixel detector is the component of the ATLAS detector that is the closest to the collision point.
It consists of 80 million pixels which are arranged in three concentric layers. The detector’s concept
is based on the semiconductivity of silicon which causes ionization of the material when a particle
passes through it. The resulting current is picked up by the nearby pixels. The output of multiple
pixels in different layers delivers information about the trajectory of the particle.
The SCT is also a silicon based detector, that consists of silicon strip sensors. This sensors are

distributed over four cylindrical barrel layers and 18 endcap discs. This setup can is pictured in figure
3.3.

The TRT is an arrangement of straw tube detectors. A charged wire runs though the center of every
tube, creating a potential difference between itself and the walls of the tube. Moreover, each tube is
filled with xenon and argon, which is ionized when a particle passes through. The resulting ions then
either drift towards the charged wire or towards the walls, depending on their charge. By looking at

8 5th February 2020 15:17



3.1 Setup

Figure 3.2: Overview of the ATLAS detector, with labels of the components [11].

every straw, that created a signal, the path of a particle can be determined.

3.1.2 Calorimeter

Surrounding the inner detector, the calorimeter measures the energy of particles that are passing
through by slowing and eventually absorbing the particle. In general, calorimeters are divided into
two parts: the electromagnetic and the hadronic calorimeter. Both of them are based on the same
principle but while the electromagnetic calorimeter uses the electromagnetic force to decrease the
energy of a particle, its hadronic counterpart uses the strong force.
Electromagnetic calorimeters detect electromagnetically interacting particles e.g. electrons and

photons. These particles lose energy while traveling through matter because of pair production and
Bremsstrahlung. Pair production refers to the process where a photon converts into a electron-positron
pair. Electrons and positrons at high energies emit photons, in a process that is called Bremsstrahlung.
Through on both of these processes, the energy loss of electrons and photons cause electromagnetic
showers. The shower stops when the energy of the particles is insufficient for a further decay.
A Hadronic calorimeter utilizes a similar concept. In this case, hadronic showers are the result of

the strong force between the incoming particle and the absorbing material’s nuclei as well as ionization.
However, a shower only happens if the emerging particles also react with the material’s nuclei.

5th February 2020 15:17 9



Chapter 3 The Atlas Detector

Figure 3.3: Overview of the structure of the inner detecor [12].

3.1.3 Muon spectrometer

Muons and neutrinos usually pass through the calorimeters of the ATLAS detector undetected. Muons
leave a track in the inner detector, however in order to detect muons, the muon spectrometer is
necessary. It consists of three toroidal magnets, which generates a strong magnetic field and chambers
that measure the track of the particle. The muon spectrometer works similar to the TRT. The toroidal
magnets create a magnetic field that deflects incoming muons, which then are tracked in the adjacent
chambers. The muon chamber is the largest component of the ATLAS detector.

3.1.4 Detection

Figure 3.4 displays a cross section of the ATLAS detector, as well as tracks left by various particles.
As mentioned before, electrons and photons are detected in the electromagnetic calorimeter, while
hadrones, exemplified by proton and neutron tracks, are detected in the hadronic calorimeter. Muons
are detected in the muon spectrometer, neutrinos do not get detected at all.

3.2 Coordinate System

As displayed in figure 3.2, the ATLAS detector has a cylindrical symmetry. Therefore, an often used
set of coordinates are cylindrical coordinates, where the z-axis is along the beam pipe. The x- and
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3.3 Reconstruction

Figure 3.4: Crosssectional overview of the detector, showing typical examples of particles being detected.

y-component of a given coordinate is then expressed through a combination of a radius and the angleΦ
between the x-axis, which points towards the center, and the y-axis, which points up. Another variable
is the polar angle θ, which describes the angle between the x-y-plane and the z-axis. Additional useful
variables are the angular difference (defined in equation 3.1), the pseudorapidity (defined in equation
3.2) and the transverse momentum (defined in equation 3.3). Moreover, the pseudorapidity can be
used as a replacement for the polar angle θ.

∆R =
√
∆η2
+ ∆Φ

2 (3.1)

η = −ln
[
tan

(
θ

2

)]
, η ∈ (−∞,∞) (3.2)

pT =
√

p2
x + p2

y (3.3)

3.3 Reconstruction

There are some particles that can not be observed by particle detectors. As displayed in figure 3.4,
neutrinos do not interact with any of the layers of the ATLAS detector. Also, some particles with a
small lifetime decay into other particles, hence only their decay products can be detected. However,
based on reconstruction processes, particles that are not observed can be indirectly measured.

The presence of a neutrino is determined by checking for missing momentum [13], which can not
be measured directly. However, in a symmetric particle collision, the sum of all measured transverse
momenta is equal to zero. Any other result is a strong indication of an undetected neutrino.
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Chapter 3 The Atlas Detector

A particle that has decayed can be reconstructed using the invariant mass of the daughter particles. If
the particle decayed in a two body decay process, equation 2.3 can be used to express the motherparticle
(C) and both of the daughter particles (A, B) in the rest frame of the motherparticle:

Cµ = (m0, 0, 0, 0), (3.4a)

Aµ =
(
EA, pxA, pyA, pzA

)
, Bµ =

(
EB, pxB, pyB, pzB

)
. (3.4b)

The particles are related like this:
Cµ = Aµ + Bµ . (3.5)

By squaring this equation and using the energy momentum relation that is defined in equation 2.4, this
can be simplified to:

m2
C = m2

A + m2
B − 2(EAEB − ®pA ®pB). (3.6)

This relation can be used as a condition to check, weather or not two particles are the result of a known
particle decay.
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CHAPTER 4

Machine learining

Machine learning has advanced significantly in the last decades. Nearly 60 percent of German
companies are using at least one application of machine learning [14]. Moreover, there are many
cases in everybody’s daily life, where machine learning is a vital component. For example, numerous
photos taken with a smartphone have been processed by a build-in machine learning [15]. And this
are just a few out of many sophisticated cases, where machine learning is used [16].
Traditionally, algorithms are programmed for a certain task with a detailed step-by-step chain of

commands. However, this method has some disadvantages, e.g. being written by a human and therefore,
limited by the knowledge of the developer about the topic at hand. Moreover, such applications are
mostly inflexible and not able to adapt to a change.
Contrary to this, machine learning attempts to fulfill a task with limited prior knowledge and

no given solution of said task. Instead of executing an array of commands, machine learning is
designed to recognize and approximate patterns. Therefore, applications that utilize machine learning
are adaptable to different scenarios, that are similar in their approach. Especially, tasks where the
development of a conventional algorithms would be too difficult, for example spam email recognition,
can be fulfilled by machine learning applications.

4.1 Neural Network

Unsurprisingly, the the most common machine learning technique is an attempt to replicate the
way biological neural systems are set up. This technique is called a neural network or artificial
neural network. Similar to the human brain and its neurons, a neural network comprises many basic
computation units. These units are commonly referred to as nodes, or fittingly, neurons.

An overview of a neural network is displayed in figure 4.1. In general, a neural network consists of
three parts: the input, hidden and output layers. Moreover, a layer is an arrangement of nodes. All
nodes from one layer are connected to all nodes in the next layer. Both the input and output layer act
as an interface between user and neural network. The input layer receives data, which is forwarded to
the hidden layer. Similarly the output layer is passed data by the prior layer and forwards it to the user.
The intermediate zone between the input and output layer can not interact with the user, hence the
name ’hidden’ layer. Despite the name, the hidden layer can consist of one, or multiple layers, making
the neural network a shallow or deep one. Moreover, the hidden layer is also solely responsible for the
processing of data.

5th February 2020 15:17 13



Chapter 4 Machine learining

Figure 4.1: Overview of a neural network, comprising an input, hidden and output layer. All nodes from one
layer are connected to all nodes of the next one.

Figure 4.2: Depiction of a basic node. Two inputs (Xi) and weights (wi) , as well as an additional bias term (b)
are the input values into the node. The sum of these values is then put through an activation function ( f ) and
output to the next layer.

4.1.1 Function of a singular Node

Figure 4.2 displays a basic node with two input variables. In general, a node obtains input values from
all nodes in the previous layer. If the node is an input node, it receives input from an external source.
Furthermore, every input has an assigned weight. Therefore, the input of an arbitrary node can be
written as:

Yn
k =

∑
m

wn
m,k · X

n−1
m + bk, (4.1)
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4.1 Neural Network

where Y is the k-th node located in the n-th layer. In this equation, the node receives an input from m
previous nodes, each providing an output X , with a weight w. Also, a bias term b is added.

Like its biological counterpart in the human brain [17], the output of a node changes significantly,
if a certain threshold is crossed. For this purpose, activation functions determine the output of nodes.
Additionally activation functions introduce non-linearity to tackle more complex problems. Some
examples of activation functions are displayed in table 4.1. The binary step function is a prime
example for the principle that is inspired by nature. If a certain value is reached, the node puts out 1
otherwise the output is 0. Therefore, the node is either activated or deactivated.

4.1.2 Measurements of Perfomance

To improve the performance of a neural network, a metric needs to be established to measure the
performance of said network. Otherwise neither the user nor the neural network has an understanding
of a good model, the network itself would be completely unguided and random.

Supervised learning is a scheme to train a neural network, where each event carries a label, which
indicates, what the event is. The network then tries to classify the events. Therefore to measure
the performance of the neural network, a more sophisticated method has to be established, which
compares predictions the network makes and the label, that the event actually has.
In neural networks, the one of the most commonly used method of evaluating likelihood of a true

prediction is the loss function. However, there are more quantities that measure the performance
in other ways, like the Receiver Operating Characteristic (ROC) curve. Therefore, to evaluate the
capabilities of a given neural network, multiple metrics are measured during training, in order to look
at the performance from different angles.

Loss

The loss function, also often referred to as cost function, is an expression for the difference between
the predictions of the neural network and true label. Therefore, to improve the accuracy of the
classification, the loss has to be minimized. A basic loss function would be the absolute value of
the difference between the predicted and the real labels. However, a more sophisticated function is
the binary cross entropy which is defined in equation 4.2. In the formula, p(τ̃) is the probability the
network makes the classification τ̃. τ is the actual label of the event.

L = −
1
N

N∑
i=1

τilog(p(τ̃i)) + (1 − τi)log(1 − p(τ̃i)) (4.2)

In this thesis the loss function is the binary crossentropy.

Receiver operating characteristic curve

For a system, that is subject to a binary classifier, the terms true positive (TP), false positive (FP) ,
false negative (FN) and true negative (TN) are useful. This terms are best understood by taking a look
a the confusion matrix displayed in table 4.2.
The ROC curve is a plot of the true positive rate (TPR) against the false positive rate (FPR). The
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Name Function Plot

Binary step f (x) =

{
1 for x ≥ 0
0 for x < 0

Sigmoid f (x) =
1
2

[
1 + tanh

( x
2

)]

Tanh f (x) = tanh (x) =
ex − e−x

ex + e−x

Relu f (x) =

{
0 for x ≤ 0
x for x > 0

Elu f (x, α) =

{
α(ex − 1) for x ≤ 0
x for x > 0

Table 4.1: Examples of different activation functions by name, mathematical definition, and graphical
representation [18].
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reference variables
Positive Negative
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TP

correctly classified
as positive

FP

falsely classified
as negative

N
eg
at
iv
e

FN

falsely classified
as positive

TN

correctly classified
as positive

Table 4.2: Confusion matrix for better understanding of therms like TP, FP , FN and TN. The labels on the
y-axis are algorithm predictions. The labels on the x-axis are the real labels of the variabels.

equations for the TPR and the FPR are listed as equation 4.3.

TPR =
TP

TP + T N
(4.3a)

FPR =
FP

FP + T N
(4.3b)

In case of equality between the TPR and FPR, the ROC curve becomes a diagonal. This kind of curve
indicates a random selection and therefore, the system makes as many right as wrong predictions.
A ROC curve above this diagonal line is desirable because that demonstrates that more positive
than negative predictions are made. The area under curve (AUC) value is another good classifier to
determine the performance of the network. The AUC value is calculated by integrating the ROC curve
from 0 to 1. The result is a number between 0 and 1, where the random process has an AUC value of
0.5.

4.1.3 Backpropagation

Backpropagation is the backbone of a neural network. It allows a network to systematically improve
based on its previous model. This is achieved by adjusting parameters after data has passed through the
neural network. The cycle of all data passing through the network is called an epoch. In general, not all
input data is passed through the neural network at once, rather it is divided into small packages, called
batches. Instead of after each epoch, backpropagation happens after each batch has been processed by
the network.

In general, a backpropagation algorithm takes a look at the gradient of the loss function with respect
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to the weight and bias factor for each individual node. By calculating the impact the weights have
on the gradient of the loss function after each epoch, beneficial adjustment to the weights can be
predicted. These adjustments are made until ideally a minimum of the loss function is reached. The
gradient is calculated by using the formulas from equation 4.4, where L is the loss function defined in
equation 4.2, and Y was defined in equation 4.1.

∂L
∂wn

m,k

=
∂L
∂Yn

k

∂Yn
k

∂wn
m,k

(4.4a)

∂L
∂bk
=

∂L
∂Yn

k

∂Yn
k

∂bk
(4.4b)

Using equation 4.1, equation 4.4 can be simplified:

∂Yn
k

∂wn
m,k

=
∑
m

Xk−1
m =⇒

∂L
∂wn

m,k

=
∂L
∂Yn

k

∑
m

Xk−1
m , (4.5a)

∂Yn
k

∂bk
= 1 =⇒

∂L
∂bk
=

∂L
∂Yn

k

. (4.5b)

The gradient can also be written as in equation 4.6. θ are the optimized parameters during the training,
for example weights or bias terms. τ̃i is the prediction made by the network, and τi is the label of the
event. This more simplified and general form will be used in further calculations.

g(θ) = ∇θ

∑
i

L(τ̃i, τi) (4.6)

A basic backpropagation algorithm iterates equation 4.7 until a stopping criteria, like minimization of
the loss function, is reached. η is the step size for the updates, also called learning rate.

θi+1 = θi − ηg(θi) (4.7)

Optimizers are functions that determine how the parameters are adjusted based on the loss gradient.
They take multiple parameters, and can lead to a quicker minimization of the loss function, that are
calculated faster.

One of the most commonly used optimizer is the Stochastic Gradient Descent (SGD), which is
based on equation 4.7. As a further improvement, a parameter called momentum can be introduced.
This momentum is used to take gradients of the previous steps into account. In general, multiple small
small steps using very aligned gradients can be replaced by fewer steps. However, if the gradients are
less aligned, a low momentum is beneficial, because it prevents the overshooting of a minimum. With
the user defined scaling parameter γ and the momentum, which is the sum over the past gradients, the
equation, that calculates the change in the parameter θ becomes:

θi+1 = θi − ηg(θi) + γ
∑
j

ηg(θ j). (4.8)

Additionally, a decay parameter can be introduced, which decreases the effect of less recent gradients,
making them less impactfull over the course of a training.
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Adaptive Optimizer

In contrast to SGD, Adam is an adaptive optimizer, which is influenced by the past gradients. It
updates the weights, by taking an average of past gradients and squared past gradients. An update
of parameters in Adam looks like equation 4.9. m, defined in 4.9a and v, defined in 4.9b are biased
estimates of the two momenta, which Adam uses. m̃, defined in 4.9c and ṽ, defined in 4.9d are the bias
corrected forms estimates. With both momenta, parameters like weights, can be updated as shown in
4.9e.

mi = β1mi−1(1 − β1)g(θi−1) (4.9a)

vi = β2vi−1(1 − β2)g(θi−1)
2 (4.9b)

m̃i =
mt

1 − β1
(4.9c)

ṽi =
vt

1 − β2
(4.9d)

θi+1 = θi −
η√

ṽt + ε
m̃t (4.9e)

β1, β2 and ε are chosen by the user, based on the understanding of the problem. According to [19]
β1 = 0.9 , β2 = 0.999 and ε = 10 × 10−8 are a good set of default parameters. The decay parameter,
which was mentioned in section 4.1.3, can also be introduced to Adam.

4.1.4 Improving the Performance

Overfitting

One of the most common problems when optimizing a neural network is overfitting. During the
training, a neural network picks up many features of which not all are actual features of the data, but
random fluctuations and noise. An example for the concept of overfitting in general can be seen in
figure 4.3. While the orange function represents the training data perfectly, it diverges significantly
from testing data. The blue function is obviously a better fit which describes both training and testing
data. This problem can be countered in many ways, some examples are data splitting and dropout.

In a feedforward network that uses supervised learning, the dataset used for training can be divided
into two sets. One is specifically designated for training the network, while the other is for validating
the model that the network has developed during training. Hence, a difference in performance,
especially a growing divergence between training and testing data indicates overfitting.
Another behavior, that a neural network can develop is a dependency between nodes of different

layers on each other. Therefore, certain nodes could form a dominant "path" through the network.
This can cause the nodes to become interdepended, hence leading to a less general network. To
counteract this behavior, a method called dropout can be used. By applying dropout, every epoch a
certain amount of nodes in every layer is deactivated. This concept is sketched in figure 4.4. However,
dropout deceases the speed at which the network finds a minimum.
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Figure 4.3: Theoretical example of the concept of overfitting, displaying one set of training and one set of testing
data. One function is an adequate fit, while the other is an overfit.

Figure 4.4: Sketch of the network shown in figure 4.1, before and after dropout is applied. On the left side, all
the nodes within the range of one layer are connected. On the right side, some nodes have been deactivated by
dropout and therefore are not connected to the other nodes.
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4.1 Neural Network

Figure 4.5: Visualization of the influence that different learning rates have on the learning process.

Optimizing Hyperparameters

Hyperparameters are parameters, that are used to control the training process of a neural network. In
contrast to other parameters, the values of hyperparameters are set before and not changed during the
training process of the network. An optimization of this parameters can increase the performance of a
neural network significantly.

Some hyperparameters change the setup of the neural network, examples of this being the number
of nodes per layer, the amount of layers and the number of epochs. The choice of hyperparameters
need to match the complexity of the problem. If one chooses a simple network for a complicated
problem, then the network will not perform well or be mostly unable to classify. On the other hand, if
a network is more complicated than the problem, it can reach overfitting much faster and be just as
useless in application.
As mentioned before, optimizers also use hyperparameters. Both SGD and Adam have learning

rates and decay hyperparameters. In both cases, one of the most impactful hyperparameters is the
learning rate. Using a large learning rate can cause the network to skip and never find the minimum.
A small learning rate, however, can cause the network to get stuck in a local minimum and therefore,
not find the minimum at all. This behavior is visualized in figure 4.5.

The batch size is also a hyperparameter that has an influence on training. If the batch is too small,
some features could be recognized as dominant because they are dominant in the current batch. One
way to encounter this problem is batch normaization. In applying batch normalization, the output
between each layer becomes normalized, which decreases the effect of overrepresented features.
The optimization of a neural network is not a trivial task. One obvious way to search for the right

combination of hyperparmeters is a grid search. Selecting an area of reasonable hyperparameters
and looking at their results can reveal an optimized set of hyperparameters. However, the more

5th February 2020 15:17 21



Chapter 4 Machine learining

hyperparameters a neural network has, the larger the grid becomes that has to be searched.
A more sophisticated approach is the evolutionary search. For this method, sets of hyperparameters

are randomly generated. After all sets of hyperparameters have finished training, the loss function is
used to rank the sets based on their performance. The worst performing sets are replaced by new sets
of hyperparameters that have been created based on the better performing ones. This process then is
repeated until performance no longer increases.
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CHAPTER 5

tZq Process

The top-quark is the most massive elementary particle measured. It has a lifetime of 0.5 × 10−24s,
which is shorter than the timescale at which the strong force acts, making it unable to form hadrons.
Because of this, one can probe the top-quark’s decay in order to get information on a seemingly solitary
quark. Information, like polarization, that is typically lost when quarks form bound states. Hence, by
observing the top-quark, the consistency of the SM can be tested. Typically, the top quark is produced
in tt pairs via the strong interaction. However, there are single-top-quark production channels. One of
the more rare single-top-quark production processes is the focus of this thesis, the tZq.
Feynman diagrams are a two dimensional graphical representations of mathematical expressions

which describe complex interactions between sub-atomic particles in physics. One of the two axes
represents space while the other represents time. Straight lines are used to express fermions. An arrow
on the straight line points either in the direction of time if the depicted fermion is a particle, or against
time if it is an antiparticle. Bosons are either portrayed as a dashed or wavy line, depending on the
convention. The exception of this rule is the gluon, which is illustrated using a line that looks like a
spring. Lowest order Feynman diagrams of the tZq process are displayed in figure 5.1.

5.1 Signal Regions

For this process, two signal regions are defined: 2j1b and 3j1b. The number in front of the j refer
to the number of jets that are detected in the respective signal region. A jet is a cone of collimated
particles, that originates from the hadronization of quarks or gluons. Jets which originate from a
b-quark are called b-jets. To identify b-jets, an algorithm scores all jets based on how likely they are
to originate from a b-hadron decay. Therefore jets that are identified as b-jets are called b-tagged. The
number in front of the b expresses how many b-jets are required to form the signal region.

As displayed in figure 5.2 a possible final state for a tZq production process contains three leptones,
one neutrino, one b-quark, and one quark. The quarks are detected as jets or as b-jets if tagged as such.
The untagged jet is typically found in the forward part of the detector and so it is called a forward jet.
The additional untagged jet in the 3j1b signal region originates from a gluon-jet, which is referred to
as radiation.
To differentiate the leptons they are called l1, l2 and l3, where l1 and l2 are the leptons originating

from the decay of the Z-boson. Therefore l3 is the lepton, that is produced by the decay of the
W±-boson. In order to determine which leptons are l1, l2 and l3, equation 3.6 is used. The two leptons
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Figure 5.1: Lowest order Feynman diagrams of the tZq process.

which combine to make a Z-boson with mass closest to the known Z-boson mass are assigned as l1
and l2; the remaining one is l3.

5.2 Background Processes

Background processes can be falsely identified as signal for various reasons. They can either have
final states which appear similar to the signal region or objects that have been misidentified by the
reconstruction process.

Background processes of the tZq process are the productions of ttV (displayed in figure 5.3(a)),
diboson (displayed in figure 5.3(b)), single top-quark (displayed in figure 5.3(c)), tt (displayed in figure
5.3(d)), Z-jets (displayed in figure 5.3(e)) and tW±Z (displayed in figure 5.3(f)). The single top-quark
production channel has a low contribution however, it is considered as a background process to tZq.
Moreover only the tW± sample is evaluated because the s- and t-channel are not overlapping with the
tZq process. Therefore only the tW± is displayed in figure 5.3(c). The diboson background channel
has three different event sections: W±W±, W±Z and ZZ events, figure 5.3(b) shows the W±Z channel.

All of these processes can be falsely identified as the 2j1b or 3j1b signal region. In the tW±Z
process for example both gluons as well as the b-quark are detected as jets. Furthermore, the Z- and
W+-boson decay in three leptones and one neutrino, which is the same amount and configuration as in
the tZq process. Therefore, the requirements of the 3j1b region are met. For the same reasons, the ttV
and tt production channel also appear as 3j1b signal region.
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Figure 5.2: Feynman diagram of the full decay chain of the tZq process in the trilepton final state.

5.3 Choice of Variables

The core of every machine learning application is to identify features of the dataset at hand. However,
a machine learning application does not have a sensory system and is therefore highly depended on
input data. Thus, the input data has to be carefully chosen by a human with an understanding of the
topic at hand, so that useful information is passed to the network.

As an example, one could imagine a machine learning application that is tasked with distinguishing
between cats and dogs based on given input variables. An example for less viable variables would
be whether or not the animal has fur, claws or teeth; while the height, length and the sound it makes
would be good variables.

The number of background processes is large in comparison to the number of the tZq events.
Therefore, a simple analysis would be difficult and unreliable. However, a more sophisticated method
like a neural network can be used to increase the discrimination between signal and background events.

5.3.1 Commonly used Variables

Signal and background events are similar in the configuration of their final state particles. However,
other properties of the final state particles can be analyzed. Commonly, variables which describe
characteristic features based on which particles can be identified, are chosen to differentiate between
the signal and background. These variables can be simple, or complex reconstructed variables. Listed
in table 5.1 are some variables that are chosen to train a neural network to distinguish tZq process
from background events.
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Figure 5.3: Lowest order Feynman diagrams of background processes of the tZq process.

5.3.2 Lorentz invariant Variables

As defined in section 2.4, Lorentz invariance refers to quantities that are not changed by a Lorentz
transformation. Lorentz invariant variables, do not depend on boosts or orientation of their system.
Therefore, a lot of uncertainties become reduced. Lorentz invariant variables also do not correlate
with each other.

Squaring the equation, that was defined in 3.5, shows the daughter particle’s kinematics to the
invariant mass of the mother particle:

CµCµ
= (Aµ + Bµ)(A

µ
+ Bµ)

= AµAµ + 2AµBµ + BµBµ,
(5.1a)

AµBµ =
1
2

(
CµCµ

− AµAµ − BµBµ
)

=
1
2

(
m2
C − m2

A − m2
B

)
.

(5.1b)
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Variable Rank Description
2j1b 3j1b

mbj f
1 1 (Largest) invariant mass of the b-jet and the untagged jet(s)

mtop 2 2 Reconstructed top-quark mass��η( j f )�� 3 3 Absolute value of the η of the forward-jet
mT (l, E

miss
T ) 4 4 Transverse mass of the W±-boson

b tagging score 5 11 b-tagging score of the b-jet
HT 6 - Scalar sum of the pT of the leptons and jets in the event

q(l3) 7 8 Electric charge of the lepton from the W±-boson decay��η(l3)�� 8 12 Absolute value of the η of the lepton from the W-boson decay
pT (W) 9 15 pT of the reconstructed W±-boson
pT (l3) 10 14 pT of the lepton from the W±-boson decay
m(l1l2) 11 - Mass of the reconstructed Z-boson
|η(Z)| 12 13 Absolute value of the η of the reconstructed Z-boson
∆R( j f , Z) 13 7 ∆R between the forward-jet and the reconstructed Z-boson

Emiss
T 14 - Missing transverse momentum

pT ( j f ) 15 10 pT of the forward-jet��η( jr )�� - 5 Absolute value of the η of the radiation-jet
pT (Z) - 6 pT of the reconstructed Z-boson
pT ( jr ) - 9 pT of the radiation-jet

Table 5.1: Variables, which are used for a neural network in the 2j1b and 3j1b signal regions. The variables are
ranked for both regions [20].

Moreover, using pT , Φ and η a four-vector can be written as:

aµ =
©«

pT cosh(η)
pT cos(Φ)
pT sin(Φ)
pT sinh(η)

ª®®®¬ . (5.2)

Therefore a scalar product between two vectors, which do not have a common ancestor, in this
notation is:

〈A|B〉 = AµBµ = pT ,ApT ,B
[
cosh(ηA)cosh(ηB) − cos(ΦA)cos(ΦB) − sin(ΦA)sin(Φ2) − sinh(ηB)sinh(η2)

]
= pT ,ApT ,B

[
cosh(ηA − ηB) − cos(ΦA − ΦB)

]
.

(5.3)
The only pair of particles that originate from a common ancestor are l1 and l2. Therefore, their

scalar product is described by 5.1b. All other particles do not share a common ancestor, and can
therefore be described using 5.3. Even though, pT , Φ and η are not Lorentz invariant properties, the
scalar product in equation 5.3 is Lorentz invaraint[21].
Therefore full set of Lorentz invariant parameters can be determined, which comprises scalar

products as well as Lorentz invariant variables from table 5.1. For both the 2j1b and 3j1b regions
these variables are listed in table 5.2.
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Variable 2j1b 3j1b Description
mZ x x Mass of the reconstructed Z-boson

mb j f

x x (Largest) invariant mass of the b-jet and the untagged jet(s)

mtop x x Reconstructed top-quark mass
q(lW ) x x Electric charge of the lepton from the W±-boson decay〈
l1 |l3

〉
x x Scalar product between the first and second lepton〈

l2 |l3
〉

x x Scalar product between the second and third lepton〈
bj |l1

〉
x x Scalar product between the b-jet and the first lepton〈

bj |l2
〉

x x Scalar product between the b-jet and the second lepton〈
bj |l3

〉
x x Scalar product between the b-jet and the third lepton〈

fj |l1
〉

x x Scalar product between the forward-jet and the first lepton〈
fj |l2

〉
x x Scalar product between the forward-jet and the second lepton〈

fj |l3
〉

x x Scalar product between the forward-jet and the third lepton〈
fj |bj

〉
x x Scalar product between the forward-jet and the b-jet〈

rj |l1
〉

x Scalar product between the radiation jet and the first lepton〈
rj |l2

〉
x Scalar product between the radiation jet and the second lepton〈

rj |l3
〉

x Scalar product between the radiation jet and the third lepton〈
rj |bj

〉
x Scalar product between the radiation jet and the b-jet〈

rj | fj
〉

x Scalar product between the radiation jet and the forward-jet

Table 5.2: Lorentz invariant variables, which are used to train a neural network in the 2j1b and 3j1b signal
regions. The x marks wheather or not the variable appears in the respective signal region. The term scalar
product refers to the definition given in equation 5.3.

28 5th February 2020 15:17



CHAPTER 6

Optimization of the Hyperparameters

The primary focus of this chapter is the comparison between networks, that have been trained using
Lorentz invariant and commonly used variables. Therefore, neural networks are set up and trained
using the Lorentz invariant variables for both signal regions. The performance of the networks trained
with Lorentz invariant variables are compared to the networks that were based on commonly used
variables.

In order to create neural networks, the open-source library Keras [22] is used. Keras is written in
python and able to run on TensorFlow, CNTK, or Theano. Keras comprises almost all tools, which are
essential in order to build up a neural network, e.g. activation functions and optimizers.

6.1 Choice of Optimizer

After setting up the network, it is tested with a set of initial hyperparameters and the Lorentz invariant
variables from table 5.2. Using supervised training, the network is trained to differentiate between
signal and background events. Initially the optimizer SGD was used, however it did not seem to be
able to fulfill the previously mentioned objective. The initial chosen learning rate was causing the loss
function to stagnate at a certain value or to alternate and therefore the loss never converged reliably to
low values. However, as mentioned before in section 4.1.4 alternating loss values over the course
of the training can be the result of a large learning rate. Nevertheless, the impression that SGD was
not able to separate signal and background events was backed up by the ROC curve. While the ROC
curves often seemed to follow a linear gradient, the AUC values of these ROC curves were close to
0.6. Furthermore, a grid search scanning pairs of learning rates and momenta was conducted, but it
did not reveal a promising combination either.
Therefore Adam, is tested as optimizer. In figure 6.1 the difference between Adam and SGD is

displayed. While SGD does not seem to learn well, Adam is able to separate the events reliably, even
though it is clearly underfitted. Because of this, the search for a good combination of a learning rate
and momentum for SGD is abandoned and all further networks are trained with Adam as optimizer.

In order to increase the performance of the neural network, the set of hyperparameters is optimized
as well. However, the large number of hyperparameters of the system forces a large grid that has to be
searched. This behavior is often referred to as the curse of dimensionality. Because of this the general
approach is to optimize one or two hyperparameters at once based on the loss-value. A combination
of hyperparameters that resulted in the lowest loss value is assumed to be an optimized set.

5th February 2020 15:17 29



Chapter 6 Optimization of the Hyperparameters

Figure 6.1: Comparison between Adam and SGD, based on different metrics. From top to bottom the metrics
are loss, ROC with AUC, and the response of the network. Diagrams on the left side display the results achieved
using Adam. The right column are the metrics of the network using SGD.
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Figure 6.2: Loss values of different neural networks, that were trained using different hyperparameters. From
top to bottom the changing hyperparameters were the learning rate, the number of nodes per layer and number
of layers, the dropout and the decay. The 2j1b signal region is on the left side and the 3j1b region on the right.

2j1b 3j1b range for grid search
Learning rate 5 × 10−5 6.5 × 10−5 [1 × 10−7, 1]
Layers in the hidden layer 7 4 [3, 11]
Nodes per hidden layer 45 110 [20, 120]
Dropout 0.1 0.38 [0.01, 0.99]
Decay 4 × 10−6 7 × 10−8 [1 × 10−8, 0.1]

Table 6.1: Optimized values of hyperparameters used to train neural networks for both the 2j1b and 3j1b signal
regions. The ranges for the grid search are also listed for each parameter.

This process is iterated until all hyperparameters are optimized. Figure 6.2 displays this iterative
process. First the learning rate was optimized, second the number of layers and nodes, third is the
dropout and lastly the decay hyperparameter.
The range for the grid searches are displayed in table 6.1, as well as the resulting optimized

parameters. For this training processes, the number of epochs was set to 1 000. The loss of
performance, that can occur during training over too many epochs was countered by early stopping.
This method stops the training process when indications overfitting is detected.

6.2 Differences between Signal Regions

During the optimization process, some differences between the 2j1b and 3j1b signal region were
observed. A good example of these differences are displayed in figures 6.2 and 6.3. The values in the
figures displaying the 3j1b region seem to alternate more, while the figures of the 2j1b signal region
appear to follow a function. A comparison of the performance of neural networks using different
signal regions, which is displayed in figure 6.4, also shows a difference. Networks trained using the
2j1b and 3j1b signal regions result in similar ROC curves and AUC values. However, the optimized
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network, which was trained using the 3j1b signal region archived a lower loss value than the one using
the 2j1b signal region.

Figure 6.3: Loss values of different neural networks, that were trained using different amounts of nodes per
layer. The 2j1b signal region is on the left side, the 3j1b region on the right.

6.3 Comparison

Figure 6.5 shows the performance of a neural network which was trained using the variables from
table 5.1. Comparing this figure to figure 6.4, shows mixed results. One one side, the ROC curve of
the network that was trained with commonly used shows a higher AUC value than both networks that
used Lorentz invariant variables. However the loss value of both of these networks are smaller than
the loss value of the network that was trained using the variables from table 5.1.

Using Lorentz invariant variables to train the networks seem to be a viable alternative to commonly
used variables. The results achieved by using Lorentz invariant variables seem to be as good as results
achieved by using common variables. Furthermore the Lorentz invariant variables could even proof
to be a better choice, because of advantages over commonly used variables, e.g. that they are not
correlated and independed of boost and orientation of the system.

6.4 Outlook

This behavior could be the result of the attempt to optimize the hyperparameters based on the
minimization of the loss value. Therefore another grid search could be conducted, which is focused
on the maximization of the AUC value. Moreover, by using the previously mentioned method of
optimizing one or two hyperparameter at a time, it is possible that the found minimum of the loss
function is not the global minimum but rather a local one. Also before starting this iterative process, a
initial set of hyperparameters was chosen, which can also limit the success of the search of optimal
hyperparameters.
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Figure 6.4: Performance of two optimized neural networks, which were trained using Lorentz invariant variables,
measured by different metrics. The the graphs on the left side show metrics of the network, that was trained
using the 2j1b region. The graphs on the right show metrics of the 3j1b region.
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Figure 6.5: Performance of a neural network, which was trained the variables from table 5.1, measured by
different metrics [23].

To counteract the curse of dimensionality that prevented a proper grid search, an evolutionary
search could be implemented. Additionally, other optimization schemes that were not mentioned in
this thesis could be introduced, such as K-Fold [24] and the L1 and L2 norm [25].
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CHAPTER 7

Conclusion

The main focus of this work was to compare the performance of neural networks, which were trained
with different sets of variables with respect to their ability to discriminate signal and background
events in the tZq process. This process is of interest because of the inability of the top quark to
hadronize, making it describable as a free quark. Frequently, kinematic variables are used as input
variables for the neural network.

The concept of machine learning, as well as the concept of Lorentz invariance, was introduced. A
set of Lorentz invariant variables was defined, which are not depended on the unpredictable boost and
orientation of the system. Furthermore Lorentz invariant variables also do not correlate with each
other. Neural networks, which were operating in two different signal regions, were optimized by using
a grid search. The performance of these networks was then compared to a network which was trained
with commonly used variables.

While training neural networks with Lorentz invariant variables two patterns have been observed.
The first pattern was that while one signal region had a lower loss value, the other signal region was
alternating less. The second pattern was that networks in both signal regions had a lower AUC value
than a network which was trained using common variables. However, the loss values of the networks
that used Lorentz invariant variables were lower. This can be the result of the optimization of the
hyperparameters, which had the objective to minimize the loss.
Nonetheless networks which were trained using Lorentz invariant variables performed as well as

networks which used common variables. Therefore Lorentz invariant variables are a considerable
option for training neural networks in both signal regions and can even be a better choice, because of
the advantages that they offer.
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