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CHAPTER 1

Introduction

Motivation

Mankind’s curiosity has led to many great achievements. Starting from observations of nature, new
technologies are often developed. And with the progress of these technologies further possibilities
emerged to discover the unknown.
Over time, physicists explained the dynamics of macroscopic objects with the theory of classical

mechanics and general relativity and continued to describe nature at microscopic scales via quantum
mechanics. The latter development accumulated into the Standard Model (SM) of modern particle
physics in the second half of the 20th century. Ever since, it was tested and confirmed by countless
experiments.

Nevertheless, it is also well known that it does not explain a sufficient amount of matter/antimatter
asymmetry and, of course, neither gravitation on microscopic scales. Aiming to further explore these
mysteries, the precision of experiments has been enhanced and also the energy ranges of experiments
have been expanded in the last decades. Especially, the extended energy ranges led to the confirmation
of the top quark (t) (1995) [1] and the Higgs boson (H) (2012) [2]. Today, the most advanced high
energy accelerator is the Large Hadron Collider (LHC) [3] at the European Organization for Nuclear
Research (CERN) which went into operation in 2009. With its four sophisticated detectors, it provides
a formidable instrument to validate the SM on the one hand, but, on the other hand, also gives access
to analyze open questions in particle physics.

One of the four detectors at LHC is ATLAS [4]. As the energy of particle collisions are converted
into mass, ATLAS is designed to detect the large amount of outgoing particles. The data collected
largely contributes to the analysis done in particle physics. Its high precision measurements give
insight into many SM parameters.
As nature forbids direct measurements of single quarks [5], free quarks are instead reconstructed

with the produced particles via hadronization [6]. The hadrons produced are often from narrow cones
of hadrons, so called jets, that can be identified [7] and allow reconstruction of the quark triggering it.
The heaviest fundamental particle, the top quark, produced many times during the runtime of the

LHC, has been studied in various productions. The top quark plays a key role in high precision
measurements of the SM. Due to its high mass, its lifetime is only 1 × 10−25 s. Therefore, unlike any
other quark, it decays before the process of hadronization sets in and can be experimentally observed
as a single quark without being bound into a hadron. The large mass also indicates that it has a large
coupling to Higgs bosons. For that reason, the top quark seems promising in searches for physics
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Chapter 1 Introduction

beyond the SM [8, 9].
But the identification of collisions producing top quarks and, especially, processes involving a top

quark is not easy. First, the reconstruction of the jets is necessary. To identify rare associated top
quark productions, like the associated tZq production [10], several of these jets have to be related to
lighter quarks and, additionally, corresponding gauge bosons, like Z and W , have to be identified at
the same time. Processes like the associated tZq production therefore only became accessible after
upgrading to the record centre-of-mass energy of

√
s = 13 TeV. These are of special interest to probe

the coupling of the Z boson and the t quark. Additionally, this process can serve as an important
background for rare tH productions. In order to learn more about this interesting production process,
this thesis focuses on the identification of associated tZq events.

In order to cope with the challenging task of distinguishing events measured by ATLAS and relate
the measured data to a process like associated tZq, one relies on recent developments in the field of
computer science. First proposed in 1943 [11], machine learning gained much popularity over the
years. Applications like image or speech recognition are well known to the general public. But artificial
neural networks (NN) have also proven to be a useful tool to deal with the increasing complexity of
physical tasks being of particular interest in particle physics. They are by now a standard tool for the
identification of events in this field.

Also, associated tZq productions have already been investigated based on NNs. The corresponding
multivariate analysis has thereby been implemented with NeuroBayes [12]. In this thesis, a different
programming package, Keras [13], is used. It will be studied in detail whether the different
implementation can keep up or even exceed the NeuroBayes performance for the identification of
associated tZq events. In this case, experiments could be studied by different NN algorithms.

Thesis overview

The thesis is structured as follows. The theoretical background to understand the physical and technical
concepts behind this thesis is discussed in Chapter 2. This foundation is laid by giving an introduction
to the SM, overviewing the LHC and ATLAS detector and explaining the principle of NNs, including
methods to evaluate the success of the training procedure.

Chapter 3 describes the multivariate analysis done in this thesis. Before showing the discrimination
results of this analysis, the training input has to be preprocessed and a set of user-defined parameters
for the neural network has to be adjusted to the task of tZq identification. For this, the evaluation
methods explained in Chapter 2 are taken into account.
A detailed comparison to the existing NeuroBayes artificial neural network is given in Chapter 4.

Here, the training quality and network discrimination is considered. Finally, the overall performance of
both networks are compared to answer the question if Keras is suitable for a long term NeuroBayes
replacement.
The last chapter gives a conclusion and outlook of this thesis.
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CHAPTER 2

Theoretical background

In order to understand the theoretical concepts of this thesis, the chapter first focuses on giving the
reader a brief introduction to the Standard Model (SM) of particle physics. The Large Hadron Collider
and the ATLAS detector with its components are discussed in the second section. Then, the tZq
process and its most important backgrounds are explained. Lastly, this chapter covers the concept of
machine learning and methods to evaluate neural networks.

2.1 The Standard Model

The SM of modern particle physics explains all known particles without any further substructure and
their interactions with one another. So far, the predictions of the SM have been very precise and have
been verified by many experiments.

The SM predicts exactly two types of fundamental particles. The fermions and the bosons. While
matter consists only of fermions, the bosons are often referred to as the force carrier particles as they
describe three of the four fundamental forces; The strong, weak and electromagnetic interactions
excluding only the gravitational interaction.

The last missing pieces predicted by the SM have been discovered quite recently, including the top
quark (1995) [1], the tau neutrino (2000) [14] and the Higgs boson (2012) [2] which was first detected
by the ATLAS detector. Figure 2.1 shows the properties of the fundamental particles. Additionally,
each particle has an associated antiparticle with the same spin and mass but opposite physical charges
such as the electrical charge.

The upper part of the figure shows the three generations of fermions, consisting of six leptons and
six quarks, with their electrical charge, mass and possible interactions while the lower part describes
the gauge bosons which are related to the fundamental forces. The quark masses are scheme dependent
and are taken from Ref. [15].
The particle responsible for the electromagnetic interaction is the photon which couples to all

electrically charged particles. The electromagnetic interaction between an orbital electron and the
atomic nucleus keeps an atom stable.

The W± and Z gauge bosons mediate the weak interaction. These particles are massive and act on
all matter particles. This force is most commonly known for β decays like p→ n + e+ + νe.

Lastly, the gluon mediates the strong force. It only acts on color charged particles (quarks and the
gluon itself). It is ultimately responsible for confining quarks into hadrons. The recently found Higgs
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Chapter 2 Theoretical background

boson is an exception as it is the only spin 0 boson. Simplified, it explains why all elementary particles
but the photon and gluon are massive. Historically, this was a problem in the SM (for the W and Z
gauge bosons). The Higgs boson is also massive, hence it interacts with itself [16, 17].

Figure 2.1: Overview over the current Standard Model of modern particle physics [18]. The type of interaction
is shown in the respective color. The Higgs interaction is displayed by the dotted orange line

With all the success the SM had in recent history, there is still research to do. As of today, the
SM cannot explain gravitation. Furthermore, the model is inconsistent with the Lambda-cold dark
matter (Λ-CDM) model of the universe and therefore it cannot explain dark matter [19] and the
matter/antimatter asymmetry [20].

2.2 The LHC and the ATLAS detector

2.2.1 Large Hadron Collider

The LHC is a circular high energy particle collider located near Geneva. It was built by CERN
between 1998 and 2008.
In order to collide proton beams (or heavy ion beams) at centre-of-mass energies up to 13 TeV

(1 045TeV), the particles must be sent through multiple other accelerators beforehand, as seen in
Figure 2.2. Once in the LHC, the bunches are kept on a circular orbit by dipole magnets. Additionally,
quadropole magnets are used to focus the beam. A complex cooling system is installed to keep the
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2.2 The LHC and the ATLAS detector

Figure 2.2: Overview of the accelerators of the Large Hadron Collider [21]. The protons (heavy ion beams) are
first accelerated in LINAC2 (linear accelerator) and three circular accelerators (Proton Synchrotron Booster,
Proton Synchotron and Super Proton Synchrotron) before being injected into the LHC

superconducting magnets at their working temperature of 1.9K. Using accelerating cavities and
electromagnetic resonators, the protons are accelerated to high velocities being only 3.1m s−1 slower
than the speed of light.

After reaching their maximum energy, the two beams circulating in opposite directions intersect at
one of four points where the main detectors analyze the collision. These detectors are ATLAS, CMS,
ALICE and LHCb. This thesis uses Monte Carlo simulated data based on the ATLAS detector [22].

2.2.2 ATLAS Detector

In order to analyze the events occuring at the interaction points, a complex structure of detectors is
necessary. The largest particle detector at CERN is the general purpose ATLAS detector with a length
of 44m and a diameter of 25m weighing about 7 000 t. An overview of ATLAS and its components
can be seen in Figure 2.3. The following information is taken from Ref. [4].

The ATLAS coordinate system

The interaction point of the event is taken as the origin of the ATLAS standard coordinate system.
Then, the beam direction and the transverse plane of the beam line define the z-axis and the x-y plane,
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Chapter 2 Theoretical background

Figure 2.3: Overview of the structure of the ATLAS detector [4]

respectively. The positive x-axis points to the centre of the LHC while the positive y-axis is defined as

pointing upwards and r =
√

x2
+ y2. The transverse azimuthal angle φ is measured around the z-axis,

and the polar angle θ is the angle from the z-axis. The more common way to describe the polar angle
is by introducing the pseudorapidity η. It is defined as

η = − ln
(
tan

θ

2

)
Distances in the pseudorapidity-azimuthal angle space are then calculated by

∆R =
√
∆η2
+ ∆φ2

Figure 2.4 shows the definition of the ATLAS coordinate system.

Figure 2.4: The ATLAS coordinate system [23]. The zylinder illustrates the ATLAS detector and p shows the
colliding particles and their respective directions
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2.2 The LHC and the ATLAS detector

The Inner Detector

The innermost component of the ATLAS detector is the inner detector (ID). It is responsible for
tracking electrically charged particles and measuring their momentum. By surrounding the inner
detector with a magnetic field of 2 T, the direction of the curve reveals the particles charge and the
curvature gives information about its momentum. The ID covers a range of |η | < 2.5. This wide
tracking capability is achieved by layering the ID in several subdetectors. These can be seen in
Figure 2.5. The pixel detectors are located at the interaction point, practical for identifying particles

Figure 2.5: Schematic view of the subcomponents of the Inner Detector [24]

in dense environments. It consists of four barrel layers and three endcap disks with a total of 1744
modules. Each module scans an area of 2 by 6 centimeters and contains roughly 47000 pixels. The
readout of each pixel is about 50 by 400 micrometers totaling about 80 million readout channels.

The semi-conductor tracker works similarly to the pixel detectors but rather relies on long, narrow
strips and aims to detect a larger area. The strips measure 80 µm × 12 cm. 6.3 million readout channels
are used to analyze the four double layers of silicon strips.

The largest part of the ID is reserved for the transition radiation tracker taking up a volume of about
12m3. Drift tubes with a diameter of 4mm and a length of 144 cm detect charged particles. Overall,
the transition radiation tracker has 298000 straws.

Electromagnetic Calorimeter

Measuring energy of particles is essential to particle identification. The electromagnetic calorimeter
(ECAL) aims to absorb the energy of the particles interacting electromagnetically (charged particles
and photons).
Electrons(or positrons) passing through matter will emit Bremsstrahlung when entering the field

of the nucleus. Photons with energies of Eγ >10MeV near the nucleus predominantly create an
electron-positron pair via pair production. This leads to an electromagnetic shower. By alternating a
lead or stainless steel absorber material and a liquid argon scintillator, the electromagnetic shower
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Chapter 2 Theoretical background

Figure 2.6: Overview of the ATLAS calorimeter system [25]. The Tile barrel and two Tile extended barrels
form the Tile Calorimeter (TileCal).

is contained in the calorimeter as soon as the particle loses energy through ionization rather than
Bremsstrahlung. In order to minimize the size of the ECAL, the absorber’s material is chosen with a
high atomic number Z , as the distance X0, by which the particle’s energy decreases by the factor 1/e,
is inverse proportional to Z .

The calorimeter is further devided into a barrel part (liquid argon (LAr) electromagnetic barrel) and
two end cap components (LAr electromagnetic end-caps), covering the pseudorapidity of |η | < 1.475
and 1.375 < |η | < 3.2, respectively.
As heavier charged particles, like muons and hadrons, do not emit as much Bremsstrahlung as

electrons, they will barely leave any traces in the ECAL.

Hadronic Calorimeter

Due to their higher mass, particles interacting with the strong force pass the ECAL and their energies
are therefore measured with the hadronic calorimeter. Hadrons passing matter will lose their energy
through ionization or strong interaction with the material’s nuclei. The resulting particles will also
lose energy while being in the material. In consequence, a hadronic shower occurs.
The hadronic calorimeter is built of the tile calorimeter (TileCal), the LAr hadronic end-cap

calorimeter and the LAr forward calorimeter.
The TileCal is responsible for the central part, covering pseudorapidity regions of |η | < 1.7. The

calorimeter is structured like the ECAL but using steel as the absorber and plastic scintillating tiles as
active material.

A liquid argon calorimeter with copper as an absorber measures the energy between 1.5 < |η | < 3.2.
This LAr hadronic end-cap calorimeter is located, as the name suggests, directly behind the end-cap
electromagnetic calorimeter.

Lastly, the LAr forward calorimeter absorbs energy in the pseudorapidity range of 3.1 < |η | < 4.9.
It has several layers using first copper and then tungsten as absorber. Tungsten is predominantly used

8



2.3 Associated tZq production and their most important backgrounds

to measure interactions of hadrons.
Figure 2.6 shows the calorimeter system and their respective parts.

Muon Spectrometer

With muons being the only long lived particles not sufficiently interacting in the ID nor in the
calorimeters for detection, an extra muon spectrometer is necessary to measure their transverse
momentum. The spectrometer is designed to measure high momentum particles of 100GeV with 3
percent accuracy.

Figure 2.7: Structure of the Muon Spectrometer [26]

Similar to the ID, the muon spectrometer uses magnets to bend their trajectories up to |η | < 2.7.
From the degree of curvature, one concludes the momentum of the muon. Additionally, it has its own
muon trigger system further helping ATLAS identify muons with about 1 million readout channels.
The complete structure is seen in Figure 2.7.

The only known particles not detected by ATLAS are neutrinos as they do not interact electro-
magnetically or strongly. Due to conservation of momentum, any net transverse momentum measured
by the detector indicates missing transverse energy Emiss

T carried by undetected particles. Information
about neutrinos is therefore extracted from Emiss

T [27].

2.3 Associated tZq production and their most important backgrounds

2.3.1 tZq production

This thesis focuses on the top quark production with an associated Z boson. This process has a small
cross-section making it a challenging process to analyze. Since the upgrade to

√
s = 13 TeV in 2015, a
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u d
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Figure 2.8: Example Feynman graphs for the associated production of a top quark and a Z boson

considerable amount of associated top quark productions have been detected [28]. The tZq production
can, for example, provide information about the ttZ or WWZ coupling or contribute to the background
for the rare tH production. The Feynman diagrams for leading order (LO) tZq productions can be
seen in Figure 2.8 and involve the weak interaction in the t-channel. The Z boson can either radiate
from the W boson or in principle from any of the given quarks. Evidence of the first associated tZq
production was found in 2018 by the ATLAS collaboration [10].

As the top quark and the Z boson have a very small lifetime, only the final state can be detected. It
can consist of only hadrons or up to three leptons, depending on the decay of the top quark and the Z
boson. Although the three lepton channel has the smallest branching ratio, this thesis only covers a
leptonically decaying top quark and Z boson as this channel reduces the background dramatically [29].
A tZq final state therefore consists of three leptons, one b jet, one or two additional untagged

jets, referred to as 2 j1b and 3 j1b signal regions, respectively. Jets are particle cones produced via
hadronization of a quark or gluon and are reconstructed by ATLAS [7]. In case of the 3 j1b signal
region, the forward jet is denoted as the untagged jet for which the invariant mass is largest. The other
untagged jet is then labelled as radiation jet [22]. Furthermore, as neutrinos are involved (from the W
boson which resulted from the top quark decay), the final state also has missing transverse energy
Emiss
T .

2.3.2 Background events

Analyzing events involving a t quark or a Z boson means identifying and measuring the final state
of the event. Consequently, other productions with a similar final state may be misinterpreted as an
associated tZq production. These backgrounds events are discussed in the following.

Diboson

The largest background is the diboson production [22]. The produced bosons, especially the WZ
productions may then decay leptonically and lead to an identical final state if additional jets are present.
The WW and the ZZ productions contribute less [18]. However, a reconstruction failure is possible
so that these events also occur in tZq selection. Example diboson Feynman graphs are displayed in
Figures 2.9(a) and 2.9(b).
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2.4 Artificial neural networks

t t̄V and tWZ

ttZ productions already have a t quark and Z boson and therefore have a similar final state as the
tZq productions. This background then often passes selection. For the ttH events, the H boson
rarely decays leptonically [18] and has a small cross-section so that this background has a very small
contribution. A Feynman graph for ttZ productions is laid out in Figure 2.9(c).
The tWZ production has never been measured experimentally and has a very small predicted

cross-section [30]. The tWZ contribution is still important but due to its similar kinematic nature to
the ttV productions, these productions are kept together [29]. A tWZ production Feynman graph is
seen in Figure 2.9(d).

t t̄ and tW

The cross-section of this production is orders of magnitude higher than tZq productions and gives a
considerable background. A tt pair production can be seen in Figure 2.9(e).
The tt and tW productions are grouped due to the almost negligible contribution of tW and the

difficulty to separate both samples [29]. For the sake of completeness, a Feynman graph of tW
productions is given in Figure 2.9(f).

To separate signal (tZq productions) and background events efficiently, it is necessary so study the
kinematic variables of the final states. A table of such variables can be found in Section 3.1.
The MC data used below will contain a sufficient amount of these backgrounds to test the

identification capabilities of the NN.

2.4 Artificial neural networks

2.4.1 Structure and Principle of neural networks

One aim of the thesis is to discriminate signal and background. For this, a NN is implemented. This
subsection lays the foundation to understand how a NN works.

Principally, a NN consists of several layers; An input layer, hidden layers and an output layer. The
computation unit inside a layer is the neuron, also called the node. The width of the network, i.e.
the number of nodes in a specific layer, varies. The input layer represents the knowledge before
training. In this thesis, they are given by the kinematic variables of the event. As the output aims to
discriminate signal and background, it is chosen to be between 0 and 1. The number of nodes in the
hidden layers determines the complexity of the network and has to be adjusted to the difficulty of the
task. Figure 2.10 shows a schematic structure of a basic NN.

The value of the nodes in the hidden layers depends on all nodes x ′1, x
′
2, . . . , x

′
n in the previous layer.

They are calculated as follows:

xj = F

(
bj +

n∑
i=1

wi j · x
′
i

)
where bj denotes a bias term to further increase the degree of freedom. wi j corresponds to a weight
which is multiplied to the value of a node in the previous layer. The activation function F(x) makes
the system nonlinear and is crucial to the network [32]. This function depends on what one wants
to achieve. For this thesis, the hidden layers use F(x) = max(0, x), also called Rectified Linear Unit
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Figure 2.9: Feynman graphs of the background sources considered in tZq multivariate analysis [31]
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(ReLU) [11]. The output layer is handled differently. Here, the Sigmoid activation function is used to
give the NN its output in the range of 0 and 1 [33]. The Sigmoid function is given by

F(x) =
1

1 + e−x

For a NN to train a model, the output of a training sample are compared to a known data set (supervised

Figure 2.10: The Structure of a simple neural network. The circles represent nodes and are aligned to model the
different layers. The arrows indicate the dependencies of the nodes [34]

learning). It constantly calculates a loss value, which is a measure of how well the network performs.
For binary classifications, loss values Lp are defined with the binary crossentropy function [35]

Lp(yi) = −
1
N

N∑
i=1

[
yi · log(p(yi)) + (1 − yi) · log(1 − p(yi))

]
where yi is the label of the known sample (1 for signal and 0 for background) and p(yi) denotes the
value of the output node.

This value is essential for the training of the NN. The principle of every NN is to minimize Lp(yi)

by updating the weights wi j on a batch. The update frequency is chosen beforehand by defining a
batch size.
The value of the updated weight w′i j can be computed with the Stochastic Gradient Descent

(SGD) [36]:
w′i j = wi j − η · ∇wi j

Lp(yi)

where η corresponds to the learning rate. One must have η > 0. This algorithm is also known as
backpropagation [37]. One computes the gradient of the loss with respect to the weights in order to
minimize the error.
The SGD method is only one out of many optimizers. The NN in this thesis is implemented with

the Adam (Adaptive Moment) optimizer [38]. In contrast to SGD, Adam changes the learning rate for
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every parameter in the batch. The idea is to adapt the learning rate by a running average by both the
gradient and the second moment of the gradient. If t indicates the current training iteration, then the
running averages are calculated by

m(t+1)
wi j
= β1m(t)wi j

+
(
1 − β1

)
∇wi j

L(t)p (q)

v(t+1)
wi j
= β2v

(t)
wi j
+

(
1 − β2

) (
∇wi j

L(t)p (q)
)2

where m0
= v0

= 0. β1 and β2 are recommended to be 0.9 and 0.99, respectively [38]. Further
defining

m̂wi j
=

m(t+1)
wi j

1 −
(
β1

) t+1

v̂wi j
=

v(t+1)
wi j

1 −
(
β2

) t+1

the update on the weight is then given by

w
(t+1)
i j = w

(t)
i j − η

m̂wi j√
v̂wi j
+ ε

ε is a number introduced to avoid devision by zero. The default value of the Adam optimizer is
ε = 1 × 10−8 [38].

2.4.2 Evaluation methods

Evaluation is an important step in machine learning as the training can fail and therefore predict
incorrectly. The most common ways to double-check the model are as follows:

Evaluation of loss curve

As the NN passes through an epoch, i.e. running the entire dataset, the average loss value of that
epoch can be calculated. Plotting the epochs against the loss value gives the loss curve. It visualizes
the learning process of the model. An example can be found in Figure 2.11(a). If the curve behaves as
expected, the loss should decrease monotonically. In order to get an unbiased result from the model,
another, to the model unknown sample (validation sample) also passes through the final network. The
shape of the corresponding validation curve should not differ significantly from the training curve.
For that reason, it is important to plot both validation and training curves.
Under some circumstances, the model can overtrain [39]. This usually happens if the network is

chosen to be too complex, e.g. too many nodes or hidden layers. Then, the NN may learn non-existing
patterns in the training dataset and fails to predict any future samples applied to the model. Typically,
the loss of the validation sample then starts increasing again while the training error continues to
decrease. An exemplary overtrained model is seen in Figure 2.11(b).
One way to prevent overtraining is by introducing dropout. It randomly ignores the output of the

selected nodes, along with the incoming and outcoming connections, on a batch in training. This
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(a) Successfully trained model (b) Overtrained model

Figure 2.11: Loss curves of different models. The blue and orange line show the training and test samples,
respectively

forces the NN to adapt during each batch making it less probable to overtrain. Nodes in a layer are
denoted with a fixed probabilty that they are ignored. This is called the dropout d. For the validation
sample, all computation units are used. Instead, the output values are scaled with d to match the
expected output at training times [40].

Accuracy metric

As the loss value does not represent the probabilty of predicting an event correctly, the accuracy metric
is defined. It is given by the ratio of correctly predicted events and total events, i.e.

Acc =
TP + TN
P + N

where P refers to total signal, and N to total background events. TP and TN then correspond to
correctly predicted signal and background events, respectively. Here, an event is associated as signal
(tZq) if the NN output reads ONN ≥ ST = 0.5.

Figure 2.12(a) displays an accuracy curve and its expected shape. In this example the accuracy
approaches about 78%, corresponding to the probabilty the model predicts signal or background
correctly. For a perfect model, i.e. a flawless separation is achieved, the accuracy is 100%. Nevertheless,
this evaluation method might not be sufficient as it is strongly dependent on the ratio of signal and
background samples. If the amount of background samples were many orders of magnitude higher
than the signal events, a NN always choosing background would yield a high accuracy.

This gives rise to develop other methods which are independent of the signal-background event
yield ratio. One is discussed below.
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Chapter 2 Theoretical background

Receiver Operating Characteristic Curve

In a binary classification, P and N are used to calculate the true positive rate (TPR) and false positve
rate (FPR). These are defined as

TPR =
TP
P

FPR =
FP
N

where FP is the number of falsely predicted signal events. Plotting TPR against FPR for different signal
thresholds ST results in the Receiver Operating Characteristic Curve (ROC-Curve). The ROC-Curve
is another method of evaluating the trained model. A perfect model detects all true signal events with
a FPR of zero. If the ROC-Curve is near the diagonal, this can be interpreted as randomly guessing
events. The Area under the Curve (AUC) gives an estimation of the performance [41] of the model so
that a perfect model has an AUC value of 1. An example ROC-Curve and the corresponding AUC
value is laid out in Figure 2.12(b).
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2.4 Artificial neural networks

(a)

(b)

Figure 2.12: Further evaluation methods of neural networks. On the top and bottom, the accuracy metric and
the Receiver Operating Characteristic Curve are shown, respectively. For the ROC-Curve, the arrows denote the
FPR-TPR pairs at different signal thresholds ST . The corresponding AUC value is also displayed.
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CHAPTER 3

Multivariate Analysis

The artificial neural network used in this thesis is programmed with Keras [13], an open source library
written in Python. This chapter gives insight into the implementation of the NN by first discussing
the preprocessing of the kinematic variables used for the network. Furthermore, every problem one
attemps to solve with machine learning requires a good set of hyperparameters. Their impact and
optimization is examined in the second section of the chapter. Section 3.3 gives an overview of the
results of this analysis.

3.1 Preprocessing

The samples used for training are Monte Carlo (MC) simulated and correspond to ATLAS data taken
from pp collisions at

√
s = 13 TeV with an integrated luminosity of 139 fb−1 in the period of 2015 to

2018. Details about the simulated data can be found in Ref. [22]. To match the simulation with the
data taken from ATLAS, the samples were reweighted. Furthermore, the thesis only considers the
3 j1b signal region.

In order to choose the variables for training, the variables are ommited step by step and the loss of
correlation to the target (0 for background and 1 for signal) due to its removal is calculated. Only
significant (correlation loss CL > 2.5%) variables are used for training. For the variables in this
analysis the ranking is done in Ref. [29] and listed in Table 3.1. The corresponding distributions are
displayed in Figures 3.1, 3.2 and 3.3.
The neural network might perform poorly if the values of the variables are of different magnitude.

For that reason, the data is normalized with the Standard Scaler from Scikit [42]. The standard score
z is calculated as

z =
x − u

s
with the sample x, the mean of the training samples u and the standard deviation s. The test sample is
then fitted and transformed in that manner.

The MC weights are also rescaled with respect to the large amount of background samples compared
to tZq three lepton events so that the signal is weighted stronger in training. With the variables
prepared for training, the NN can be built using the Keras Sequential model [13]. The samples are
split, using a fraction for training and the rest for validation data. Training stops after the loss does not
decrease by 1 × 10−6 for 100 epochs. This is done by using the Keras EarlyStopping module. Keras
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Chapter 3 Multivariate Analysis

Figure 3.1: Kinematic distributions in order of their significance in the 3 j1b signal region, normalized area to
unity
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3.1 Preprocessing

Figure 3.2: Kinematic distributions in order of their significance in the 3 j1b signal region, normalized area to
unity
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Chapter 3 Multivariate Analysis

Variable Corr. loss [%] Definition

mb j f 43.0 Invariant mass of the b-jet and the forward jet
mt 31.8 Reconstructed mass of the top quark
|η( j f )| 17.4 Absolute pseudorapidity of the forward jet
mT(`,E

miss
T ) 12.3 Transverse mass of W boson

|η( jr )| 12.0 Absolute pseudorapidity of the radiation jet
pT(Z) 10.2 Transverse momentum of the reconstructed Z boson
∆R( j f , Z) 8.1 ∆R between the forward jet and the Z boson
q(`W
) 7.8 Electric charge of the lepton from the W boson decay

pT( jr ) 6.7 Transverse momentum of the radiation jet
pT( j f ) 5.6 Transverse momentum of the forward jet
b-tagging score 5.2 b-tagging score of the b-jet
|η(`W

)| 4.2 Absolute pseudorapidity of the W-boson lepton
|η(Z)| 3.9 Absolute pseudorapidity of the reconstructed Z boson
pT(`

W
) 3.5 Transverse momentum of the W boson lepton

pT(W) 2.5 Transverse momentum of the reconstructed W boson

Table 3.1: Kinematic variables used for training in the NeuroBayes multivariate analysis ordered by their
importance [29]. The b-tagging score denotes an estimation of how well the b-jet is identified

Figure 3.3: Kinematic distributions in order of their significance in the 3 j1b signal region, normalized area to
unity
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3.2 Optimization of Hyperparameters

then restores the training weights of the best model, i.e. the lowest loss.

3.2 Optimization of Hyperparameters

In order to train properly, the hyperparameters need to be tuned carefully. Optimization is realized by
evaluating the model with the methods explained in Section 2.4.2. The strategy for optimization is as
follows. An initial set of parameters, shown in Table 3.2, is chosen beforehand and is then adjusted
step by step. This ensures the best possible outcome.

Parameter Value

Learning rate η 1 × 10−2

Number hidden layers nlayer 3
Number nodes in hidden layers nnodes 30

Dropout d 0.3
Validation fraction v 0.1

Table 3.2: Initial set of parameters for training

3.2.1 Learning rate

The learning rate (LR) is responsible for the amount the training weights are updated with respect to
the loss gradient. If the learning rate η tends to be too large, the weights do not converge to a global
minimum of the loss but rather leap around it. On the other hand, choosing a small η can lead to the
weights not converging in training. This can be visualized with a simple one dimensional example
seen in Figure 3.4. Typically, the LR ranges from 1 × 10−2 to 1 × 10−5. Figure 3.5 shows the impact

Figure 3.4: Visualization of the impact of the learning rate η in a simplified model. The abszissa represents the
one dimensional training weight while the ordinate shows the loss [43]

the LR can have. While with η = 1 × 10−2, the NN cannot find a global minimum, choosing a learning
rate of 1 × 10−5 improves the model significally. The optimal η is then found by analyzing the AUC
value. With η = 1 × 10−4 the NN trains well and improves the AUC slightly. This is seen in Figure 3.6.
An AUC value of 87.7% is achieved in Figure 3.6(a) in comparison to 86.9% with η = 1 × 10−5.
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Chapter 3 Multivariate Analysis

(a) Loss Curve with η = 1 × 10−2 (b) Loss Curve with η = 1 × 10−5

Figure 3.5: Impact of Learning Rate

(a) ROC with η = 1 × 10−4 (b) ROC with η = 1 × 10−5

Figure 3.6: Comparison of AUC value with respect to η
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3.3 Results of the neural network

3.2.2 Structure of the neural network

The number of hidden layers and their nodes determines the complexity of the NN. On the one hand,
the model may learn insufficiently if there are too few layers or nodes. On the other hand, choosing a
very complex structure causes overtraining. A combination of well chosen structure parameters is
necessary to realize the best possible outcome.

As seen in Figure 3.7(a), the highest AUC values are achieved with 2 or 13 hidden layers. 13 hidden
layers increase the runtime of the program dramatically and as the trend towards higher numbers of
hidden layers indicates worse performance, one cannot rule out that this sudden increase in AUC value
is a fluctuation. For that reason, the number of hidden layers is chosen to be two.

With more nodes, the number of calculations in the network increases quadratically. The impact of
the nodes can be seen in Figure 3.7(b). The rising difference in training AUC value and validation
AUC value indicates overtraining. Figure 3.8 displays this overtraining with an extremely large number
of 500 nodes. Choosing too few nodes leads to unsatisfactory results. The optimal number of
nodes is therefore chosen if the validation AUC value reaches saturation without having an increasing
difference in training and validation AUC values. This is achieved with 100 nodes per hidden layer.

3.2.3 Validation fraction

The Monte Carlo tZq signal sample is mixed with the background sample and afterwards randomly
split. One fraction is then used for training while the other part serves for validation. If the training
sample tends to be too small, the network does not learn sufficiently. On the other hand, an adequate
amount of validation data is necessary to verify the training results. For this thesis, 70% and 30% of
the total 332619 MC simulated events in the sample are used for training and validation, respectively.

3.2.4 Dropout

As already mentioned in subsection 2.4.2, the value of the dropout d determines the probabilty that a
node is ignored in a layer. Finding the optimal dropout value is done in this subsection.

Dropout is only included in the hidden layers. If too few nodes are dropped the network is more likely
to overtrain while too many ignored nodes causes the training to fail as the network cannot develop
patterns to learn on. For instance, in Figure 3.9(a) a dropout of d = 0.01 is chosen. This is not suitable
as one can see significant overtraining, although Figure 3.9(b) indicates a good signal-background
separation. In the extreme case of d = 0.99, only roughly one percent of the randomly chosen nodes
are used for training. As a result, signal and background discrimination fails, as seen in Figure 3.10(b).
Overtraining is prevented with d = 0.4 while still distinguishing between signal and background.
Figure 3.11 shows the evaluation plots.

3.3 Results of the neural network

For optimal performance, the training parameters are chosen as displayed in Table 3.3.
After training and evaluating the model, the same MC sample is used for predicting signal and

background. The total signal and background discrimination can be found in 3.11(b). In order to
study the separation power of the backgrounds individually, the sample is split with respect to its

25



Chapter 3 Multivariate Analysis

(a) The AUC values for different numbers of hidden layers

(b) The AUC values for different numbers of nodes in two hidden layers

Figure 3.7: Structure impact plots with respect to the AUC values

Parameter Value

Learning rate η 1 × 10−4

Number hidden layers nlayer 2
Number nodes in hidden layers nnodes 100

Dropout d 0.4
Validation fraction v 0.3

Table 3.3: Optimized parameters for training
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3.3 Results of the neural network

(a) Loss Curve with 500 nodes in hidden layers (b) ROC with 500 nodes in hidden layers

Figure 3.8: Extreme limit of 500 nodes in hidden layers leads to overtraining

(a) (b)

Figure 3.9: Evaluation of model with d = 0.01. The left plot displays the Loss curve. The right plot shows
the signal-background discrimination. The histograms show the network output for signal and background
normalized to area unity
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(a) (b)

Figure 3.10: Evaluation of model with d = 0.99

(a) (b)

Figure 3.11: Evaluation of model with d = 0.4
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3.3 Results of the neural network

background and applied separately to the final model. Figure 3.12 shows the neural network output
distributions normalized to unity.

(a) Diboson (b) ttV+ tWZ

(c) tt + tW (d) tZq

Figure 3.12: Keras NN output distributions

While the diboson and ttZ samples peak at roughly zero (background), indicating a good separation,
the tt sample network outputs are distributed more uniformly and due to its low statistics, more
fluctuating, but a tendancy to the background implies that a discrimination has taken place. The signal
output in Figure 3.12(d) also yields that the analysis was successful in signal identification.

Hereby, an accuracy and AUC value of 79.8% and 88.2% were achieved, respectively.
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CHAPTER 4

Comparison with NeuroBayes

The main goal of the thesis is to implement the NN with Keras and to compare its perfomance to the
trilepton tZq production multivariate analysis done before in Ref. [22]. It is based on the NeuroBayes
package [12]. This chapter focuses on a brief introduction to the network structure of NeuroBayes
and proceeds to study its performance in comparison to the results of Keras.

4.1 Network structure of NeuroBayes

The main difference to Keras is the predefined number of hidden layers, namely one. The number of
nodes in this hidden layer is user-defined and set to 25.

Preprocessing is done similarly to this thesis. First, the sample is normalized to unity, transformed
to a gaussian distribution and rescaled to compensate the large background sample. After ranking
and choosing the variables for training, five separate networks are trained by using 80% and the
remaining 20% of the sample for training and validation, respectively. Having five networks, the entire
dataset can then be used for training and validation. This so called 5-fold cross validation technique is
implemented to avoid overtraining [44]. Table 3.1 shows the most important variables found by the
NeuroBayes analysis and also used in the Keras analysis.

4.2 Comparison of Results

Training quality

In Ref. [29], the training quality is checked by plotting the signal purity against the network output.
Following Ref. [45], a well-trained network’s signal purity should have a linear dependence on the
output. The signal purity is defined as the ratio of signal events and total events in a bin. A comparison
of purity plots is seen in Figure 4.1. This evaluation shows that both networks follow the linear
distribution and that Keras provides somewhat better results by eye. If one wants to analyze the
training quality in detail, a linear fit with uncertainty calculation is necessary.
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Chapter 4 Comparison with NeuroBayes

Figure 4.1: Signal purity as a function of the network output for Keras (top) and NeuroBayes (bottom) [29]

Network Output Distributions

As mentioned in Section 3.3, the tt discrimination has a flatter distribution compared to the other
backgrounds. Comparing the Keras tt predictions in Figure 3.12(c) with Figure 4.2(d), a similar
behaviour can be seen in the NeuroBayes analysis.

The other NeuroBayes network outputs in Figure 4.2 show a clear signal-background discrimination.
Compared to Figure 3.12, which displays the network’s predictions of this thesis, the distributions
look very alike.

Receiver Operating Characteristic Curves

TheROC-curve and the correspondingAUCvalue gives a good estimation of the network’s performance.
Ultimately, a higher AUC value represents a better model 1.

In Ref. [29], the ROC-Curve was defined by plotting 1-TPR against 1-FPR. Although this an unusual
definition, it gives the same insights into the model as it still scans FPR-TPR pairs for different signal

1 With NeuroBayes, the so called Gini Index is calculated. Converting to the AUC value yields AUC = Gini + 0.5
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4.2 Comparison of Results

(a) tZq (b) Diboson

(c) ttV+ ttH + tWZ (d) tt + tH

Figure 4.2: NN outputs of the NeuroBayes tZq discrimination. The network outputs are distributed between
−1 and 1 for background and signal, respectively. The histograms are also normalized to unity [29]
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Chapter 4 Comparison with NeuroBayes

Figure 4.3: ROC-Curves of the analysis done in this thesis (top) and NeuroBayes (bottom) [29]. On the bottom
plot, the x-axis is 1-TPR and the ordinate is given by 1-FPR
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4.2 Comparison of Results

thresholds. Furthermore, this definition does not change the AUC value.
In this thesis, the Keras model achieved an AUC value of 88.2% being slightly higher than the

AUC value in the NeuroBayes analysis, yielding 87.5%. Figure 4.3 illustrates the ROC-curves of
both analyses.
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CHAPTER 5

Conclusion and Outlook

Even though the associated tZq production has already been studied intensively, there is still room for
improvement. This thesis presents the multivariate analysis of a leptonically decaying associated tZq
production using the Keras package.

After giving a general introduction and the theoretical background in Chapters 1 and 2, respectively,
the multivariate analysis of MC simulated data generated for the ATLAS detector (corresponding
to 2015 to 2018 ATLAS data from pp collisions at

√
s = 13 TeV) is done in Chapter 3. At first, the

kinematic variables were preprocessed to then optimize the hyperparameters of the NN. For this,
the MC data was split into and training and validation part. The aim was to get consistent results
for the loss curves for both fractions of the data and to maximize the AUC values of the calculated
ROC-Curve. This allowed determination of the best values for the learning rate, number of hidden
layers, nodes within the hidden layers, the validation fraction and the dropout.

A previous analysis has been performed with the non open-source package NeuroBayes. Therefore,
in Chapter 4, the performance of the Keras results for the optimal hyperparameters and of NeuroBayes
is compared.

While NeuroBayes already shows remarkable results in signal-background discrimination, they have
even been further improved by the open-source package Keras. Both, training quality and predictions
of the Keras network, can compete with NeuroBayes. In fact, they are quite indistinguishable by eye.
In order to evaluate the outcome in detail, the ROC-Curve and corresponding AUC value were

analyzed. NeuroBayes reached an Area under Curve value of 87.5%. The Keras model achieved an
AUC value of 88.2% having a slightly better performance than the previous model in tZq analysis.
Furthermore, being an open-source Python module, Keras grants the user more freedom in terms of
programming.

This leads to the conclusion that Keras is very suitable as a future replacement for NeuroBayes in
not only tZq analysis, but also for particle physics in general.

Before Keras can become a standard tool, further improvements should be considered which could
not be done in this thesis due to time constraints. First, the kinematic variables used for the network
training are still chosen by the preprocessing of NeuroBayes. To be completely independent, an
implementation of a Python based preprocessing is necessary. Here, the variable ranking can be done
similarly to NeuroBayes, as shown in Appendix A. For future analyses, this ranking should be taken
into account for network training, so that a comparison of the ranking performance can be used to
identify the optimal set of kinematic variables.
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Chapter 5 Conclusion and Outlook

After these improvements, it will be interesting to use actual ATLAS data rather thanMC simulations.
Based on the performance shown for the MC data, an extraction of cross-sections for associated tZq
is possible [18]. The analysis strategy could then lay the foundation of other rare top quark related
processes.
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APPENDIX A

Variable Ranking with Keras

As already explained in Section 3.1, the variable ranking is done by ommiting the variables step by
step and calculating the deviation in correlation loss caused by its removal.

The implementation in Keras can be done similarly. Here, one by one, the variables are transformed
to a flat distribution using the Numpy random uniform module [46]. The change of the accuracy
metric is then calculated and the variables are sorted by their importance, i.e. the largest deviation of
the accuracy compared to all variables.

This is not sufficient. Having about 95 kinematic variables in total, they might be strongly correlated
among themselves. For a meaningful ranking, the strongly correlated variables have to be removed first,
otherwise the ranking might decide to keep correlated variables which will lead to poor performances
in training.
Unfortunately, the necessary decorrelation could not be performed due to time contraints. The

general idea is to compute the correlation matrix using Panda dataframes. A new matrix can then
be created with Cholesky decomposition. Variables above a certain correlation threshold could be
dropped to repeat the variable ranking.
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APPENDIX B

Keras network code

For the interested reader, the code used for the NN can be found and downloaded from: https:
//github.com/pietnogga/tZq_discrimination

In the repository, there is also the code to sort the input MC samples into directories with respect to
the background and signal.

Both codes run on Python 3.7 and some additional packages have to be downloaded for the code to
run. If you want to run the code on University Bonn computers, run

module load anaconda/2019.10-py37

to load Python 3.7. Then, activate the Anaconda environment to ensure all used packages are available:

source activate /cephfs/user/s6pinogg/PietBachelor/my_pythonized_analysis/

A list of the Python packages downloaded to the environment can also be found on the git repository.
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