
Hyperparameter Optimisation of an
Adversarial Neural Network in the tW channel

at 13 TeV with ATLAS

Christian Kirfel

Masterarbeit in Physik
angefertigt im Physikalischen Institut

vorgelegt der
Mathematisch-Naturwissenschaftlichen Fakultät

der
Rheinischen Friedrich-Wilhelms-Universität

Bonn

April 2019

I hereby declare that this thesis was formulated by myself and that no sources or tools other
than those cited were used.

Bonn, .
Date Signature

1. Gutachter: Prof. Dr. Ian C. Brock
2. Gutachter: Prof. Dr. Klaus Desch

Danksagung

Ich möchte mich bei meinem Vater bedanken, dass er seine Faszination für die Wissenschaft
mit mir geteilt hat. Ich bedanke mich bei Ian C. Brock für die Möglichkeit, diese Arbeit zu
verfassen, für seine Ermutigung zu neuen Projekten und für die Fähigkeit, seiner Arbeitsgruppe
ein Gefühl von Zusammenhalt zu geben

Meiner Familie und meinen Freunden danke ich, dass sie die Stütze für mich waren, ohne
die ich diese Arbeit nie hätten schreiben können. Für all die Hilfe, für ermutigende Worte, für
die Brettspiel-Abende und Kaffeepausen und nicht zuletzt für all die angeregten Diskussionen
kann ich allen anderen Mitgliedern der Arbeitsgruppe nicht genug danken.

4th April 2019 20:44 iii

Contents

1 Introduction 1

2 Theoretical basics 5
2.1 The Standard Model of Particle Physics . 5

2.1.1 Force carrier particles . 5
2.1.2 Matter particles . 7

2.2 Top-quark physics . 7
2.2.1 Top-quark production . 7
2.2.2 Top-quark decay . 8
2.2.3 The tW channel . 8

2.3 Kinematics of particle colliders . 9

3 The LHC and the ATLAS detector 13
3.1 Large Hadron Collider . 13
3.2 The ATLAS detector . 14

3.2.1 The ATLAS coordinate system . 15
3.2.2 The Inner Detector . 17
3.2.3 The ATLAS calorimeter system . 17
3.2.4 The Muon Spectrometer . 18
3.2.5 Particle detection in the ATLAS detector 18

3.3 tW event selection . 20
3.4 Monte Carlo simulations . 21

3.4.1 ATLAS simulation . 22
3.4.2 Systematic uncertainties in Monte Carlo simulations 22

4 Machine Learning 25
4.1 The concept of machine learning . 25
4.2 Neural Networks . 26

4.2.1 The input layer . 26
4.2.2 Decision making process . 27
4.2.3 Optimisers - Choosing the next step . 29
4.2.4 Adaptive optimisers . 31

4.3 Regularisation and Optimisation . 32
4.3.1 Dropout . 32
4.3.2 Batch normalization . 33

4th April 2019 20:44 v

4.4 Receiver operating characteristic curve . 34
4.5 Adversarial Neural Networks . 34

4.5.1 The adversarial neural network . 34

5 Hyperparameter optimisation of a classifying neural network 39
5.1 Technical details . 40
5.2 Final setup of the network . 40
5.3 The input variables . 40
5.4 The network architecture . 42
5.5 Setup of the optimisation . 44

5.5.1 Choice of the optimiser . 45
5.5.2 Tuning the optimiser . 45

5.6 Regularisation . 47
5.6.1 Dropout . 48
5.6.2 Batch normalisation . 49

6 Adversarial Neural Network 51
6.1 Approach I: classical neural network . 52
6.2 Approach II: hidden layer input . 53
6.3 Approach III: compressed hidden layer input . 55
6.4 Summary . 55

7 Conclusions 57

Bibliography 59

A Monte Carlo simulations 63

B Pre-training losses 65

List of Figures 67

List of Tables 69

vi 4th April 2019 20:44

CHAPTER 1

Introduction

Good tests kill flawed theories; we
remain alive to guess again.

Karl Popper

One of my most influencing childhood experiences is Lego® [1]. Lego is a system of inter-
locking plastic bricks allowing to build a nearly unlimited variety of structures ranging from
medieval castles to models of particle detectors [2]. Although the set of differently shaped
bricks available to the player has greatly increased over the years, I still see Lego’s appeal and
charm in the originally simple concept of a limited set of elemental pieces, enabling an inspired
user to construct almost anything he or she could think of.

This fascination for an elegant concept of elementary pieces that form everything has stayed
with me through my life and education. I found it again in the Standard Model of Particle
Physics (SMPP) [3]. The SMPP summarizes the set of elementary particles currently known
and their interactions. They represent all the tools necessary to explain our world at least to a
great extent. Carried by this inspiration I found my way into high energy collider physics and
eventually, with this thesis, had the great opportunity of working with the ATLAS collaboration
and taking part in an experiment extending the frontiers of modern physics.

When it comes to particle physics research, a conventional approach is to collide common
particles at energies high enough to create new particles. Additionally, in order to filter collisions
for event of interest, one needs to have a high rate of events to generate a sufficient sample size.
It suggests itself to apply machine learning techniques on the task of filtering events at collider
experiments. In this work, an adversarial neural network [4] is introduced. It adds the promise
of minimising the sensitivity of a selection model for systematic uncertainties to the network’s
classification task.

At first, an introduction to the state of the art for particle physics is given. The SMPP is
introduced and further information on physics incorporating top-quarks is presented thereby
motivating the difficulties in separating the Standard Model process from its background and
reducing its systematic uncertainties. Secondly the Large Hadron Collider and the ATLAS
detector are introduced to explain how events are generated and reconstructed in the detector
and how simulations for the experiment are generated. Then the concept of machine learning

4th April 2019 20:44 1

Chapter 1 Introduction

is described with a focus on neural networks and adversarial neural networks including their
hyper-parameters. Finally, the setup and training of a classifying neural network is described
and then used as basis for the setup of an adversarial neural network. The results using an
adversarial neural network are discussed based on the promises it might offer for an analysis
highly dependent on systematic uncertainties.

2 4th April 2019 20:44

CHAPTER 2

Theoretical basics

In this chapter the Standard Model of Particle Physics, or Standard Model, with its elementary
particles and interactions is introduced. Furthermore, the analysis in this thesis is motivated
and the underlying problems are outlined. For this reason a brief introduction to the theory of
particle production and decay is given.

2.1 The Standard Model of Particle Physics

Originally, created in an attempt to unify the electromagnetic, weak, and strong force under
one theory, the Standard Model of particle physics represents the status quo in this field
summarizing the elementary particles and their interactions. The model is a gauge quantum
field theory and its internal symmetry is the unitary product group SU(3)× SU(2)×U(1) in
which the interactions are represented by particles named gauge bosons. Figure 2.1 shows the
Standard Model particles and their central properties which will be introduced in this chapter
starting with the interactions and their mediators followed by a summary of the particles and
lastly a section on the top-quark in addition to its properties directly relevant for the research in
this thesis.

Although failing to answer open questions like the origin of dark matter or neutrino os-
cillations, the Standard Model has proven to be a powerful model being very successful in
providing experimental predictions for decades.

2.1.1 Force carrier particles

There are three interactions represented in the Standard Model: the electromagnetic interaction,
the weak interaction, and the strong interaction. Each is represented by an integer-spin particle,
called mediator boson. Gravity is usually not included in this model as it is negligible at this
scale.

The electromagnetic force is described by the theory of quantum electrodynamics. Its me-
diator is the photon, a massless particle that couples to the electric charge. The weak force,
most commonly known as the interaction responsible for the β-decay, couples to the weak
charge; which is an intrinsic property of all fermions. Its mediators are the Z- and the two

4th April 2019 20:44 3

Chapter 2 Theoretical basics

Standard Model of Elementary Particles

Figure 2.1: Summary table of the Standard Model particles and their properties. The matter particles,
quarks in purple and leptons in green, and the force carriers in red are shown. In addition, the Higgs, in
yellow, is included as the latest addition to the model. The sketch [5] was updated to PDG 2018 data [6]

opposite-charged W-Bosons. The electromagnetic and the weak force can be unified as the
electroweak interaction forming a SU(2)×U(1) symmetry. One aspect of the weak force is
that it allows for quark-flavour change via an interaction with a W-boson. The probability of
this flavour change is represented by the Cabibbo-Kobayashi-Maskawa matrix, CKM matrix,
which is described in detail in the PDG [6].

The strong force is responsible for the binding of quarks in the nucleon, the protons and
neutrons. It is mediated by the 8 differently flavoured gluons. It only couples to particles with
colour charge and is represented by the SU(3) symmetry term in the Standard Model.

As already stated the gravitational force is not included in the Standard Model as its coupling
strength at the scale is only of the order 10× 10−37. Although it is not a mediator, the Higgs
boson was included in the Standard Model after its discovery in 2012. It is the particle associated
to the mechanism which gives all other particles mass.

4 4th April 2019 20:44

2.2 Top-quark physics

2.1.2 Matter particles

The non-mediator particles in the model are called fermions, which are half-integer spin. They
can be broadly classified into three generations of leptons and quarks

The first generation of particles forms the most common form of matter. The electron, the
electron-neutrino, and the up- and down-quark, which are the main constituents of the proton
and neutron. In the higher generations the defining quantum numbers stay the same while the
mass of the particles increases. The quarks that share the properties of the up-quark are called
up-type quarks, and they are the charm- and top-quarks. In contrast, there are down-type
quarks: the strange- and bottom-quarks. Bound quark states are called hadrons. Moreover,
there is an antiparticle for each particle with all quantum numbers reversed.

The neutrinos interact only via the weak interaction. There is one neutrino for each lepton-
family. The non-neutrino leptons are the electron, e−,the muon, ¯, and the tauon, ø, in order
of increasing mass. They have an intrinsic electric charge which allows them to interact
electromagnetically. Furthermore, the six quark flavours are up and down, strange and charm,
bottom and top. The quarks are the only particles interacting with all three forces. They carry
not only a weak and an electric charge but also colour charge enabling them to interact with
gluons.

2.2 Top-quark physics

The most essential aspects of particle interactions, underlying the events of interest of this
work, are the production and decay processes of the top-quark. This section introduces the
main properties of the top-quark. The top-quark, being the third generation up-type quark,
is special because its mass exceeds the masses of the other quarks by orders of magnitude.
Its mass is about 173 GeV/c2 which is higher than the masses of the weak mediators. It has
a lifetime of ∼5× 10−25 s which is smaller than the typical hadronisation time, meaning that
the top-quark forms no bound states with other quarks and instead decays. These essential
properties of the heaviest quark lead to some interesting aspects and motivate one to research
its properties.

To describe the production and decay of the top-quark Feynman-diagrams will be used.
These diagrams are used to present the process and the underlying math. The time-axis is
defined as the positive x-axis. Fermions are depicted by a solid line with an arrow; for particles
it points with time and for antiparticles against it. Gluons are represented by curly the other
bosons by wavy lines. Alternatively the mediators of the weak force are sometimes depicted
using dashed lines. In addition diagrams may be labeled with an order. The lowest order
diagram is the leading order process, LO. To achieve a higher precision corrections are applied.
One then speaks of next-to-leading order, NLO, where the next-to can added iteratively for even
higher order corrections.

2.2.1 Top-quark production

Most commonly top-quarks are created via the strong force in a top- anti-top-quark final state.
Both gluon-gluon fusion and quark-antiquark-annihilation are possible production processes.

4th April 2019 20:44 5

Chapter 2 Theoretical basics

Figure 2.2 shows the processes at LO. Additionally, top-quarks can be produced as single

g

g

g

t

t

g t

t

g

t

q

q

g

t

t

Figure 2.2: tt pair production feynman diagrams at LO.

top-quarks via the electroweak interaction. The dominant process is the production through the
interaction of a bottom-quark and a W-boson shown in figure 2.3(a). Also possible but the least
common is the s-channel involving a virtual W-boson displayed in figure 2.3(b). Finally the
channel of interest for this work is the tW-channel diagrammed in figure 2.3(c). The probability
for a production to occur is denoted using the cross-section of the process.

2.2.2 Top-quark decay

The top-quark almost exclusively decays into a W-boson and a bottom-quark. The W can
subsequently decay leptonically, in a lepton-neutrino pair, or hadronically, in a quark-antiquark
pair. The channel of interest for this work is the tW-channel which is diagrammed in figure 2.3(c).
The mode in which both W-bosons decay leptonically is investigated. The analysis is described
in greater detail in the following subsection.

2.2.3 The tW channel

Finally the channel of interest for this work is the tW-channel diagrammed in figure 2.3(c). Its
final state only differs from the tt-final state by one missing bottom-quark. This makes the tt
channel the dominant background for the tW-signal. The separation gets especially complicated
because the cross-section of tW is about 10 smaller than the tt cross-section. The cross-sections
for the channels are listed below:

σtW ∼71.7 pb (2.1)

σtt ∼832 pb. (2.2)

Figure 2.4 shows the final state of the tW decay with both W-bosons decaying leptonically at
LO. For that reason, the channel is named dilepton channel. At NLO a gluon splitting can result
into a further bottom-quark in the final state. Figure 2.5 shows the tt final state in comparison to
the NLO final state of the tW-channel. In the final state these channels are not distinguishable,
i.e., they interfere. These diagrams will be referred to as doubly resonant, in contrast to the
singly resonant diagrams such as diagrammed in figure 2.2. Given that the tt-cross-section is
10 orders larger than the tW-cross-section this gives rise to an NLO correction exceeding the

6 4th April 2019 20:44

2.3 Kinematics of particle colliders

actual LO cross-section. This results in the tW-channel not being well-defined at NLO. To allow
treating tW as a separate process a workaround has to be used. There are two possible schemes
for handling the interference in the calculation of the cross-section:

Diagram Removal (DR) removes all diagrams containing a second top-quark propagator that
can be on-shell. It is used for the production of the nominal sample in this work.

Diagram Subtration (DS) only the tt contribution is canceled when the top-quark is on-shell.
This scheme is used for the systematics sample.

For more information on the schemes and their motivation see section 3.4.2,

q′

q

W

t

b

(a)

q q′

W

b t

(b)

g

b

b

t

W−

(c)

Figure 2.3: Single-top-production diagrams: s-channel (b), t-channel (a), tW-channel (c)

2.3 Kinematics of particle colliders

There are a few kinematic variables and experimental properties worth discussing because they
are characteristic for collider experiments which will be briefly introduced in this section.

One of the most important attributes of a collider experiment is its centre-of-mass energy,
√

s.
The centre-of-mass energy is a Lorentz invariant value which is valuable in particle physics
because it denotes the available energy for particle production in an experiment. It is defined
as:

√
s =

√√√√(∑
i

Ei

)2

−
(

∑
i

−→pi

)2

(2.3)

where Ei and −→pi are the energies and momenta of the initial or final state particles. In the case
of the Large Hadron Collider, which is simulated for the Monte Carlo samples used in this
thesis and introduced in chapter 3, two proton beams of equal energy are brought to collision
resulting in an energy formula of

√
s = 2Ebeam (2.4)

assuming there are two beams with energies much higher than the particles’ masses. Therefore
one can neglect them in the calculation.

4th April 2019 20:44 7

Chapter 2 Theoretical basics

g t
b

t

b

W

`+
ν

W−

ν

`−

Figure 2.4: Final state of a tW decay. Both W-bosons decay leptonically, i.e., in a lepton and the respective
neutrino.

g t

t

b

W+

ν̀

`+

g

t

b

W−

ν`

`−

(a)

g t

t

b

W+
`+

ν̀

g
b

b

W−
`−

ν`

(b)

Figure 2.5: Comparison of the final state of a tt event 2.5(a) and a NLO tW event 2.5(b). Both W-bosons
decay leptonically and the final states are identical.

8 4th April 2019 20:44

2.3 Kinematics of particle colliders

The second property is the instantaneous luminosity of an experiment which defines how
many interactions an experiment can produce per area and time. For the colliding gaussian
beams of the Large Hadron Collider it can be defined as:

L = f
n1n2

4πσxσy
(2.5)

where f is the frequency of the beams, ni is the particle number per bunch of protons and the σi
values stand for the horizontal and vertical beam size respecively. The integrated luminosity is
then used to estimate the total number of interactions for a certain period of measurement:

L =
∫

L(t)dt (2.6)

Multiplied with a cross-section the corresponding number of interactions to be expected, N,
can be defined as N = σL. For more information about the Standard Model and interactions in
particle detectors, see [3, 7].

4th April 2019 20:44 9

CHAPTER 3

The LHC and the ATLAS detector

For most researches in modern particle physics there are two main constraints. The first one
arises from the statistical nature of decay and creation processes in particle physics. Many
of the most interesting events occur extremely rarely and call for large amount of data or
more precisely high luminosity, to achieve statistically significant results. Secondly the energy
provided has to be sufficiently high to overcome the large binding energy of hadrons.

This work was carried out using simulations based on the ATLAS [8] detector at the Large
Hadron Collider (LHC) [9] which offers both a record breaking center-of-mass energy and
luminosity. This chapter summarises both machines and provides the knowledge necessary
to understand the simulations used. First of all, a summary of the machines’ parts and their
technical details is given, followed by a description of how the detector detects particles and
how their properties are measured. A brief introduction into how detector events are simulated
is presented.

3.1 Large Hadron Collider

The Large Hadron Collider, located at the facilities of the European Organization of Nuclear
Research (CERN) close to Geneva, was built to extend the frontiers of modern particle physics
by delivering high luminosities and reaching unprecedented high energies, thereby providing
the data benefiting multiple particle physics experiments.

The LHC is a circular particle collider with a circumference of 26.7 km designed to accelerate
and collide two counter-rotating proton beams. The protons are accelerated in bunches of up to
1011 protons, at energies up to 6.5 TeV. This way, the record breaking luminosity of 1034 cm−2 s−1

and center-of-mass energy of up to 13 TeV is achieved. The bunches are pre-accelerated by a
number of accelerators before being inserted in the last, so called, storage ring. An overview of
the acceleration system is given in figure 3.1 and for more detailed information one can refer to
the LHC design report [9]. The four main interaction points, at which the beams are brought to
collision, contain the main experiments of the LHC. Two of them are general purpose detectors,
namely ATLAS [8] and CMS [10]. That means they are designed to cover a wide range of final
states rather than focusing on a single analysis. The third is the LHCb [11] which focuses on
bottom-quark physics. Lastly, ALICE [12] is used for investigating heavy ion collisions. Figure

4th April 2019 20:44 11

Chapter 3 The LHC and the ATLAS detector

3.2 shows a sketch of the LHC’s location and the positions of the four main experiments.

Figure 3.1: Sketch of the LHC accelerator complex showing the acceleration systems and the main storage
ring with its experiments [13].

3.2 The ATLAS detector

The ATLAS detector is a general purpose detector meaning it aims at covering a maximum
number of final states. This allows for many topics of research within the realm of particle
physics.

ATLAS, “A Toroidal LHC Apparatus” has the distinguishing structure of a general purpose
detector. Its innermost part is formed by tracking detectors directly surrounding the interaction
point, followed by calorimeters, and a final layer for muon tracking. All the components are
visualized in figure 3.3 including two humans to give an impression of the detector’s size.

The innermost tracking detectors are summarized under the name Inner Detector (ID). The ID
consists of two silicon detectors namely the Pixel Detector and the Semi Conductor Tracker as
well as a straw detector named Transition Radiation Tracker. It allows for precise measurement
of not only charged particles’ position, and thus vertex information, but also for their charge and
momentum. A vertex is the origin of an interaction and decay determined by the intersection
of tracks. It is, however, not able to detect neutral particles.

12 4th April 2019 20:44

3.2 The ATLAS detector

Figure 3.2: Sketch of the LHC ring, the position of the experiments, and the surrounding countryside.
The four big LHC experiments are indicated (ATLAS, CMS, LHC-B and ALICE) along with their injection
lines (Point 1, 2, 4, 8) [14].

The calorimeter system is divided into two components, being the electromagnetic calori-
meter and the hadronic calorimeter. It allows to measure the energy deposited by particles in
the detector material.

The Muon Spectrometer is the last tracking detector which identifies particles crossing it as
muons, as all other charged particles are usually stopped in the calorimeter system.

In the following sections the detector’s components are outlined in more detail [15] to then
summarize how particles can be detected and distinguished. At first, an introduction to the
coordinate system is given. The reconstruction of objects from the detector response is explained
and an event selection for tW candidates introduced.

3.2.1 The ATLAS coordinate system

The ATLAS coordinate system is a right-handed and right-angled coordinate system with the
z-axis pointing along the LHC’s beam pipe. The corresponding transverse plane is defined by
the x-axis pointing towards the ring’s centre while the y-axis points upwards. The origin of the
system is defined by the nominal point of interaction. The polar angle, θ, is the angle between
the z-axis and the x-y-plane and the azimuthal angle, φ, is the angle between the x- and the
y-axis.

Alternatively, as in this work, an event’s topology is described by the azimuthal angle φ, the
pseudo-rapidity, η, and the transverse momentum, pT. The pseudo-rapidity replaces the polar
angle and is defined as

η =
1
2

ln
[

tan
(

θ

2

)]
≈ arctanh

pz
E

. (3.1)

4th April 2019 20:44 13

Chapter 3 The LHC and the ATLAS detector

Figure 3.3: Sketch of the ATLAS detector and all its components including two average humans for
scale [16].

The transverse momentum is defined as

pT =
√

p2
x + p2

y, (3.2)

where px and py are the momenta along the corresponding axes. The angular variables are
defined within

η ∈ (−∞, ∞), φ ∈ [−π, π). (3.3)

Lastly the angular separation of two objects can be measured using their R-value. The angular
difference, ∆R, is defined as:

∆R =

√
∆η2 + ∆φ2. (3.4)

The shape of the ATLAS detector makes the cylindrical system the obvious choice. This comes
with the additional benefit of a well defined transverse plane where the sum of all vectors in
the final state should be zero because the initial state has no transverse momentum.

14 4th April 2019 20:44

3.2 The ATLAS detector

3.2.2 The Inner Detector

Tracking detectors are used to measure a charged particle’s trajectory, momentum and charge.
Two types of such trackers are used in the ID of the ATLAS detector. The Pixel detector and the
Semi Conductor Tracker (SCT) are silicon detectors and the Transition Radiation Tracker (TRT)
is a straw-based tracking detector. For all parts of the ID it holds true that they are surrounded
by a magnetic field and cover a pseudorapidity range of |η| < 2.5. The magnetic field results in
curved trajectories enabling an estimate of momentum and charge [17].

Pixel detectors are based on the effect of ionisation of semiconductor material when a particle
traverses it. The induced charge is picked up by the detector’s pixels providing information
regarding the particle’s position. To provide a 3-dimensional trajectory, the pixel-chips are
ordered in 4 layers around the beam pipe, where the layer closest to the point of interaction,
called Insertable B-Layer (IBL), was added in 2015. It is located only 3.3 cm from the beam
pipe and allows to detect vertices very close to the interaction point mainly originating from
bottom-quarks, giving the layer its name [18].

The SCT, a silicon microstrip detector, is the second silicon-based tracker immediately fol-
lowing the pixel detector. It consists of modules of four silicon strip sensors organised in four
barrel layers and eighteen planar endcap disks.

The TRT is a structure composed of straw tube detectors. Each straw tube is an individual
drift chamber with a strong potential difference due to negatively charged walls and a negatively
charged wire at the center. The tubes are filled with a gas mixture (Xe or Ar) causing traversing
charged particles to ionise the gas. The resulting ions are accelerated to the walls. The drifting
particles cause a cascade effect that is then read as a hit related to the time the cascade particles
drifted within the tube. Between the tubes, material is inserted resulting in transition radiation.
This radiation has a cross section much higher for electrons than for other particles over a wide
range of energy thus adding possible electron identification to the track information provided
by the TRT.

A particle being detected in a layer of the ID is called a hit. The record of consecutive
hits within the ID gives an estimate on the particle’s trajectory and can thereby also provide
information on the vertex the particle originates from. This vertex information is useful for an
experiment with a luminosity as high as that of the ATLAS experiment because events interfere
and information from so called pileup events can affect the event’s information. Pileup events or
objects originates from additional proton-proton collisions. If the secondary collision happens
at the same time as the original hard scattering the pileup is called in-time and the events
become superimposed. Additionally, the reaction time of the calorimeters can lead to objects
originating from different bunch-crossings to interfere with the event, leading to out-of-time
pileup. As pileup originates from different events it can be separated from the event of interest
by separating the vertices.

3.2.3 The ATLAS calorimeter system

The ATLAS calorimeter system is divided into three main parts. The electromagnetic calorimeter
(ECAL), comprising a barrel and two end-caps, and the hadron calorimeter (HCAL), built by a
tile calorimeter, consisting of a a barrel and two so called "extended barrels", and the hadron end-

4th April 2019 20:44 15

Chapter 3 The LHC and the ATLAS detector

caps. The third part is the forward calorimeter which additionally focuses on electromagnetic
interaction. The tile calorimeter is scintillator-based apart from that the main part of the
calorimeter system is based on liquid argon. The components cover a pseudorapidity range of
|η| < 4.9

Calorimeters determine a traversing particle’s energy by exploiting the formation of particle
showers [15]. Due to inelastic collisions in the detector’s material, the energy of the original
particle is distributed on a cascade of secondary particles finally stopped by ionisation. The
resulting charge or photons can be measured as an estimate of the initial energy.

Electromagnetic calorimeters exploit the energy loss of electromagnetically interacting
particles in matter. Mainly photons and electrons loose their energy based on pair production
and Bremsstrahlung respectively. The energy loss initialises a cascade of particle decays called
an electromagnetic shower [15]. The decay stops when the shower particles do not hold sufficient
energy for a decay anymore. The energy of the final state shower particles is picked up by the
detector representing the initial particle’s energy. The ATLAS ECAL is a sampling calorimeter,
built of two alternating layers of absorber and detection material. In the absorber the showers
are induced to subsequently be detected in the detection layers. The barrel part covers a range
of |η| < 1.475 and the end-caps consisting of two coaxial wheels cover 1.375 < |η| < 3.2

As the ECAL uses electromagnetic showers, the hadron calorimeter depends on hadronic
shower evolution. Hadronic showers are initialized due to ionisation or strong interaction with
the material’s nuclei. If the resulting particles still interact with the material, a shower ensues.
The hadronic tile calorimeter is made of alternating layers of steel absorbents and scintillators
covering a pseudorapidity range of |η| < 1.6. The hadronic endcap calorimter (HEC) is liquid
argon-based and covers 1.4 < |η| < 3.1. Additionally, in the a high-density forward calorimeter
covers 3.1 < |η| < 4.9 Due to the larger size of hadronic showers the HCAL occupies more
detector space than the ECAL.

3.2.4 The Muon Spectrometer

The second tracking component of ATLAS is the muon spectrometer (MS) which is the outer-
most part of the detector. The task of the spectrometer is to detect charged particles traversing
the calorimeter without being stopped or depositing their complete energy, and to collect
trigger information and information on trajectory and momentum. In order to accomplish
these tasks the spectrometer is bifid with the first part being the trigger chamber covering a
range of |η| < 2.4, followed by the high-precision chamber with a range of |η| < 2.7. The main
detector’s support feet cause a further gap at about φ = 300° and φ = 270°.

Normally the only charged particles left to be detected in the muon spectrometer are muons
giving the component its name and allowing to provide good trigger information for researches
interested in muons in the final event topology.

3.2.5 Particle detection in the ATLAS detector

This section focuses on the detection and distinction of different particle types in the ATLAS
detector. The capability and combined information of the detector components is introduced
giving an explanation of the general working principle and also of the characteristics defining

16 4th April 2019 20:44

3.2 The ATLAS detector

the events in this work. Figure 3.4 gives an overview of typical particle interactions and
detections.

In order to reconstruct the particles in an event, low level information is gathered using
the direct detector output and then associated to the higher level particle information. The
information from the ID is called a track and contains not only the trajectory but also tells
how consistently a track holds hits in every layer. A track offers momentum and electric
charge information and can be associated with a vertex and a possible energy deposition in
a calorimeter. The vertex reconstruction arising from the track information allows to define a
primary vertex defined by the highest sum of squared transverse momenta while additional
vertices are identified as pileup vertices. Secondary vertices originating from tracks connected
to the original vertex can be collected to identify short-lived particles.

The calorimeter data is summarised in clusters. Clusters are neighboring calorimeter cells
with energy depositions significantly higher than the expected noise. A cluster is formed
around a high energy deposition and can be associated to hadrons or even to a corresponding
track.

In the following, the higher order objects reconstructed from this basic information and are
introduced to then explain the decisions made in the event selection for the tW channel.

Electrons are constructed from energy deposits in the EM associated with ID tracks. To
improve the decision rule, a likelihood object quantity is constructed from the shape and
the ratio of the calorimeter to tracker response, and a set of further variables suitable for a
better discriminant. There are three settings for the likelihood object namely tight medium
and loose depending on how restrictive the analysis is. Lastly an isolation quantity
is defined based on cones around the track and the EM deposit to further decimate
background and lower the probability to label non-electron objects as electrons [19].

Jets are cones of particles originating from the common hadronisation of a quark or gluon. In
the detector, they are reconstructed using 3-dimensional topological clusters of energy
deposited in the calorimeters [20]. In addition, there is further information that can be
associated to jets: i.e., an ID track or a vertex using a jet-vertex-tagger to minimize the
impact of pile-up events and to associate to secondary vertices. For reconstruction the
anti-kt algorithm was used [21].

Muon reconstruction uses MS hits matched with ID tracks. The choice can be further specified
by applying an identification cut based on MS/ID agreement and the integrity of MS hit
response. As for electrons isolation can be required [22].

b-jets are jets originating from the decay of a bottom-quark and therefore a strong discriminant
for events containing a top-quark decay. The process of identifying a b-jet is called b-
tagging and uses a multivariate discriminant. The topology of b-jets is distinguishable
from other jets due to for example clear secondary vertices, vertex alignment of a primary,
a secondary b-vertex and a tertiary c-vertex, the decay length, and the characteristic
energy scale [23, 24].

Missing transverse momentum , pmiss
T , arises from momentum imbalance in the transverse

plane. Momentum in the transverse plane should be preserved due to it being perpendic-

4th April 2019 20:44 17

Chapter 3 The LHC and the ATLAS detector

ular to the beam axis and imbalance is an indicator for neutrinos escaping the detector
without depositing their energy in the calorimeter system. It is calculated using two
contributions: signals from fully reconstructed and calibrated particles, and information
from reconstructed charged particle tracks [25].

In addition, the ATLAS trigger system is a crucial component to analysis. Although poten-
tially deserving a chapter of its own, for this work it is sufficient to just state and briefly explain
trigger information.

Triggers are used to filter events before the actual event selection is taken into account. Given
the incredible luminosity of the LHC, such a preselection is important to minimize the data
actually processed by individual analyses and selection schemes. The ATLAS trigger system
consists of three triggers: namely the Level 1 (L1), Level 2 (L2), and the Event Filter (EF), where
L2 and EF are generally referred to as the High-Level Trigger (HLT).

The L1 is completely hardware-based and its decision making process mostly rests upon
information from the calorimeter and the muon trigger chambers. The decision step relies on
high-pT objects and their multiplicity in an event while also considering missing transverse
momentum and the beam condition to provide a first and very broad event selection.

The HLT is software-based and takes the L1 events as input. The L2-trigger defines regions
of interest (ROI) as regions in the angular plane where the objects for L1 were detected, and
applies a further cut to these objects. The EF fully analyzes the event based on the complete
information available.

This trigger information can be used for event selection, making sure that certain final state
objects are dominant in the topology and also applies a first, broad selection.

3.3 tW event selection

The process that this work focuses on is the tW-channel in the dilepton decay mode, and its
most relevant background process: top-quark pair-production, tt. Other backgrounds for the
tW channel are reduced by applying an event selection:

• A single electron or muon trigger

• Electrons: tightly identified, isolated, ET > 26 GeV

• Muons: tight isolation, pT > 26 GeV

• A pair of leptons with opposite electric charge

• Leading lepton pT > 27 GeV

• Veto for a third lepton pT > 20 GeV

• A lepton must match the trigger

• At least one jet with: pT > 25 GeV, |η| < 2.5, tagged at 77 % working point

18 4th April 2019 20:44

3.4 Monte Carlo simulations

Figure 3.4: Scheme of the ATLAS-detector showing examples of typical particle detections. [16].

After this preselection the events are categorized in regions based on the jet and b-jet multi-
plicities. For this work the region with exactly two b-tagged jets was used, denoted as 2j2b.
This region has especially high impact from the NLO interference with a tt final state.

3.4 Monte Carlo simulations

A Monte Carlo simulation is a computer based stochastic calculation of a process that in
principle could be deterministic. However, the problem and the amount of statistics suggest a
stochastic approach.

Monte Carlo, in the context of the ATLAS experiment, is the simulation of physics processes
used to calibrate the performance of the detector and to compare model and measurement. As
for for this work, the classifying tools and event selection rules are tested and tuned based on
simulations to achieve a better understanding of what efficiencies are to be expected in a data
analysis. This provides the truth labels to an event that is needed for supervised learning, see
section 4, and cannot be provided by data.

4th April 2019 20:44 19

Chapter 3 The LHC and the ATLAS detector

A simulation has to be based on quantities that can not only be calculated from theoretical
models but also measured during the experiment, because the models should reflect reality in
terms of physics processes and detector effects. In collider physics, predictions are mainly based
on the cross-section of an interaction stating how high the probability for certain interaction is.
In addition, the decay width of a particle is needed to describe how particles generated in an
interaction behave in the detector system.

A proton-proton collision is modeled by describing the protons as a sea of partons, i.e.,
the gluons and quarks their momentum is carried by, and then calculating the cross-sections
for these partons to interact. The technique of seeing the collision as an interaction of two
individual partons while decoupling these interactions from the parton interactions in the
individual protons is called factorization. For a parton carrying a fraction x of the proton’s
momentum for a center-of-mass energy, ŝ, the cross-section, σ(p1 p2 → X), to create a final state
X can be described as:

xi =
pparton,i

pproton
, (3.5)

ŝ = x1x2s, (3.6)

σ(p1 p2 → X) = ∑
i,j=q,q,g

∫
dxidxj fi/p1

(xi, µ2) f j/p2
(xj, µ2) · σ̂ij(ij→ X; ŝ, µ2). (3.7)

There are two quantities in equation 3.7 not yet explained. The parton density function (PDF),
fi/pm

(xi, µ2) denotes the probability of a parton with a certain momentum fraction, xi, in the
proton k takes part in the hard scattering. The PDF is independent of the collision and has to be
gained from experiments rather than through calculations.

The second quantity µ is the so called factorization scale. It describes to which degree the
interactions of the partons in the proton can be neglected. It is an arbitrary scale determining
the precision of the simulation to some degree.

3.4.1 ATLAS simulation

The MC simulation for the ATLAS detector is generated in two steps [26]. In the first step the
actual collision is simulated, defining the particles in the final state. The underlying algorithm
is called Monte Carlo event generator. Secondly, the response to these particles is simulated by
the detector simulation allowing objects to be reconstructed from the event similar to actual
data gaining a comparison on every level of reconstruction.

Furthermore, a set of different options and generators can be chosen for the simulation. Ex-
amples would be how a parton shower is simulated or to which degree multi-parton interaction
is taken into account.

3.4.2 Systematic uncertainties in Monte Carlo simulations

Simulations, as described earlier, have to be based on certain assumptions about the input
parameters. This is especially true in those cases for which the theory does not offer a precise
result. This results in systematic uncertainties arising from the simulations, which should be

20 4th April 2019 20:44

3.4 Monte Carlo simulations

taken into account when performing an analysis. In those cases different Monte Carlo samples
are produced, each representing a different assumption about the initial parameters; showing
first of all how the data should behave with these scaled parameters and allowing to test
whether the systematic or the original sample fits better to the data. These samples of Monte
Carlo will just be referred to as systematics in this work.

Usually the simulations use the leading order diagrams. When next-to-leading order dia-
grams become relevant, the simulation sometimes has to be adapted resulting in different
samples for different orders. This work focuses on the tW and tt events interfering at NLO
as described in section 2.2.3. The total NLO amplitude is the sum of the of singly resonant
diagrams and all doubly resonant diagrams:

A = AtW +Att . (3.8)

Calculating the cross-section requires the square of this amplitude:

|A|2 = |AtW |
2 + 2R{AtWA∗tt}+ |Att |

2, (3.9)

≡ S+ I+D. (3.10)

The Diagram Removal approach is used as a nominal sample, denoted as DR, is used. It fully
removes the Att amplitude and thus both the pure tt contribution as well as the interference
term vanish. The amplitude then becomes:

|ADR|
2 = S. (3.11)

Alternatively the Diagram Subtraction or DS can be used, which is in this work represented
by the systematics sample. It introduces a gauge invariant term that cancels the tt contribution
and in a simplified way, can be written as

|ADS|
2 = S+ I+D− D̃, (3.12)

≈ S+ I. (3.13)

The nominal samples were produced using a full ATLAS detector simulation implemented
in GEANT4 and the systematic samples were mostly simulated using ATLFAST2 [27, 28]. The
systematic samples used in this thesis were produced using GEANT4 as a DS sample requires a
full simulation.

The events were generated by POWHEGPYTHIA 8 [29].

4th April 2019 20:44 21

CHAPTER 4

Machine Learning

4.1 The concept of machine learning

Over the last decades, computers have become indispensable tools of science; handling large
amounts of data, completing tedious calculations, and controlling sophisticated experiments.
For the most part, these machines were assigned discrete tasks and they followed step-by-
step commands, designed beforehand by human users, and had expected outcomes. For
particle physics in particular, computers have been used to select and process data from large
samples, allowing the processing of these data at a speed beyond human capabilities. However,
the selection rules always had to be generated by the user, therefore requiring an in depth
understanding of the underlying system. In contrast, machine learning enables a program to
establish its own decision rules, improving these over several iterations and thereby learning to
solve the problem by itself.

There has been a great effort over the last decades trying to implement a way for machines
to learn from known quantities. Thereby the machines would be enabled to analyse complex
tasks ranging from voice recognition to object classification. The efficiency and validity of a
machine learning model is highly dependent on the human understanding of the problem at
hand. One prerequisite for a successful model is the tuning of the degrees of freedom and
parameters to the complexity of the assignment. This is called hyperparameter optimisation, a
task often proportional to the learning process itself.

Machine learning can be exemplified by drawing an analogy to human beings. In order
to solve a problem, the machine needs to understand the system, to evaluate a decision step,
and finally generate new decision steps. Understanding a system means to be aware of all its
features and possibilities. Humans have their senses to easily break down observations into
useful features and concepts that can then be processed for finding a decision. A computer has
no such senses, and for most tasks, this means that the step of filtering information for a relevant
subset of features has still to be done by humans or a good preprocessing algorithm. Once a
system has been converted to a subset of features usable by a computer, the step of making its
own decisions has to be implemented. This can be done by weighting and interconnecting the
information using structures inspired by neurons and synapses in the human brain.

The structure and complexity of the network enables it to learn from data. In addition, a

4th April 2019 20:44 23

Chapter 4 Machine Learning

Input #1

Input #2

Input #3

Input #4

Output

Hidden
layer

Input
layer

Output
layer

Figure 4.1: Sketch of the typical neural network structure. In this example only one hidden layer is
included and the output is a single node [30].

metric is introduced that measures the quality of the model, called the cost or loss function.
This function allows for iterative improvement as a decrease in its value is considered an
improvement by the network. Combined with an optimiser, which suggests further steps,
this function is a basis for a network to independently approach a good decision rule for a
incompletely investigated topic.

A very commonly used machine learning technique is theartificial neural network which, on
its own forms, an extended field that builds the base of this work. The essential concepts of
machine learning will be explained in the context of neural networks.

4.2 Neural Networks

The artificial neural network, or just neural network, is one of the most commonly applied
approaches to machine learning. Its structure and naming is inspired by the neurons forming
the human nervous system.

Instead of living neurons, a neural network consists of numerous very simple processors,
called nodes. These nodes are usually structured into several layers as presented in figure 4.1.
In addition, there are several ways to structure and connect these nodes, frequently matching a
certain problem. In this explanation, only the most commonly way is explained. In that case
each node of a middle layer is getting input from each node in its predecessor and is outputting
to each node of the following layer. This obviously is only true in one direction for the extreme
layers, input and output. A simple view of communication between nodes is shown in figure
4.2 describing the step between a node and the previous layer. This is called a feed-forward
neural network, the math of which will be described in detail later.

4.2.1 The input layer

To understand a task and draw reasonable conclusions, the underlying system has to be
understood at first, which means its features need to be determined and summarised. The

24 4th April 2019 20:44

4.2 Neural Networks

Figure 4.2: Network propagation from layer (L− 1) to layer L. The linear functions and the nomenclature
of the parameters are indicated.

human brain is capable of investigating unknown systems and learning the features that are
the most unique or interesting ones. For that, the nervous system uses its senses to explore
the system and process them later. To allow a machine to do something similar, the unknown
system has to be represented in a way that it is clear for the network, what to look out for. This
usually is the task that requires most preprocessing by the user. The simplest case is to submit a
list of variables to the network. In particle physics, this could be kinematic variables of the final
reconstructed objects in an event.

The input to a neural network is given to the input layer of nodes and subsequently processed
through each following layer. For diverse tasks, different layers might deal with various parts
of the information. However, in this work the linear way of giving all information used to an
input layer and then processing it is used.

4.2.2 Decision making process

Computers representing nothing more than very powerful calculators, excel at performing high
numbers of clearly defined calculations. This requires a precisely elaborated task containing
no uncertainty. This is completely different for the human nervous system, which relies on a
certain uncertainty when processing information through a net of neuron cells. In this net, the
output of every neuron is taken as input for the surrounding neurons. The challenge of machine
learning is to represent this fuzziness by many, somewhat discrete calculations. In a neural
network, the neurons and their fuzzy interactions are represented by the nodes. Like neurons,
each node can use input from many other nodes to create a new output signal. Thereby the
sets of input information can be linked to each other in numerous ways. Combined with a
weighting system, this allows one to create complex models and match a variety of problems.

4th April 2019 20:44 25

Chapter 4 Machine Learning

zL
j =

N

∑
k=0

ωL
jkaL−1

k + bk (4.1)

The input of every node is the weighted output of all previous nodes, as shown in equa-
tion (4.1). zL

j is the input to the j-th node in the L-th layer. ωL
jk is the weight from the k-th node in

the previous layer to this node, aL−1
k is that node’s output, and bk the relevant bias; representing

a possible intercept of the functionality. The sum indicates that all k previous nodes contribute
to the input to the j-th node.

The weight allows a network to predict which variables are correlated or allow for better
decision rules when combined. In addition, the weights can just define the strongest variables
and features. Furthermore, the output of each node is a non-linear combination of the input.
This means the output can range from just one and zero to an exponential function. This is
called the activation-function of a node. A common choice is the sigmoid function as presented
in equation (4.2) [31].

aL
j = σ(zL

j) =
1

1 + ezL
j

(4.2)

The sigmoid function has an output between 0 and 1, which is frequently desired for nodes.
Especially for the final layer, as we are looking for predictions of outcome probabilities. A
selection of further activation functions is shown in table 4.1.

For this thesis, mainly the exponential linear unit, or elu, and the rectified linear unit, or
relu, were tested. Elu is suitable for converging the cost to zero relatively fast and provides the
possibility of negative output while relu allows for the same benefit as sigmoid but requires less
computational power for the simply linear output for positive values.

Of course the network does still not know the task assigned to it, but if we add a cost function
to estimate the quality of a decision rule created by a certain combination of the input, we can
easily make the network approach a better model in each step. Following the process of cost
minimisation, the solution of the initial problem can be approximated. In this work, the cost
function will be called the loss of the model.

In supervised learning, the network is trained with a set of labeled data. Each event in the
training set has is assigned a label representing what process the network is looking at. This is
referred to as truth label or just label. Comparing this truth information to the network output
makes it very easy to calculate the loss as the deviation of the network output from the known
label. A possible loss function is the crossentropy or just binary crossentropy for a binary output
result. As in this work the result is binary, signal and background, the binary crossentropy is
the natural choice of loss function. Equation (4.3) shows the underlying function where p is the
estimated probability for the prediction ŷ and y is the truth label.

C = −(y log p + (1− y) log(1− p)). (4.3)

26 4th April 2019 20:44

4.2 Neural Networks

Name Function Plot

Sigmoid f (x) = 1
1+e−x

 0

 0.2

 0.4

 0.6

 0.8

 1

-10 -5 0 5 10

Hyperbolic tangent f (x) = 2
1+e−2x − 1

-1

-0.5

 0

 0.5

 1

-10 -5 0 5 10

Rectified Linear unit, RELU f (x) =

{
0 if x < 0
x if x ≥ 0

 0

 1

 2

 3

 4

 5

-4 -2 0 2 4

Exponential Linear Unit, ELU f (x) =

{
α(ex − 1) if x < 0
x if x ≥ 0

-2

-1

 0

 1

 2

 3

 4

 5

-4 -2 0 2 4

Table 4.1: Selection of activation functions taken from the Keras documentation [31].

The loss is the most important indicator for the training quality. This training quality must
not be mixed up with the overall quality of generated model. Only after a test on a different
sample or real data the model can be fully evaluated.

4.2.3 Optimisers - Choosing the next step

The probability interaction of the nodes combined with the loss function enables a network not
only to create a model but also to evaluate it. The last missing part is an algorithm that can
estimate a step to a model that further minimises the loss. These training steps are referred to as
epochs. One could certainly do this randomly until the network finds a very low costed decision
rule if infinite computational power was provided, but that would neither be an efficient nor
the desired learning process.

The output of each node in the final layer is defined by the weighted and biased information
of the previous nodes, and lastly the activation function. For one connection, there are three
variables that have impact on the loss, the weight, the bias, and the activation. Summarising
this information for all nodes in a vector defines the loss-vector. The gradient of this vector is an
estimator for the impact of each parameter on the overall loss and thereby gives a preferred
direction for the model. Updating a network’s parameters based on this gradient is called
backpropagation. The algorithm works as follows:

1. A certain set of input variables is iterated through all layers of a network resulting in an
estimator ŷ at each output node.

4th April 2019 20:44 27

Chapter 4 Machine Learning

2. The sum of deviations from the true value at all output nodes is determined as the loss C
of the setup.

3. The gradient of the loss is calculated as the partial derivative of all network parameters
using the following equation:

∂C

∂aL−1
k

=
N

∑
j=1

∂zL
j

∂aL−1
k

∂aL
j

∂zL
j

∂C

∂aL
j

.

4. The parameters are then updated backwards through the layers following the negative
loss gradient.

This backpropagation algorithm is the backbone of the neural network’s learning process. The
decision step based on the gradient defined above is specified by the networks optimizer and
deserves a bit more attention.

There are different choices of optimisers, which try to accommodate different problems as
well as some important parameters to tune for an effective training. The length of a learning step
has to match the problem’s topology to properly let the model converge. First, we define the
gradient, g, in a more general way. The batch size, m, stands for the amount of data processed
to evaluate the next step. f is the network for a current configuration or model, θ, and the
prediction ŷ. θ summarises all the parameters optimised by the network during the training.
The truth label is y. Using these definitions the gradient becomes:

g =
1
m
∇θ ∑

j
L(f (ŷj; θ), yi). (4.4)

The configuration θ is then updated using the gradient and a multiplicative constant, η, called
the learning rate, which determines the step size for each update following:

θ′ = θ − ηg. (4.5)

Optimisation processes like these are gradient descent based optimisers and can be considered
the basis of all optimisers. Depending on the choice, they might be based on the whole training
sample or just a mini batch of the sample. The most basic form has only learning rate as its
hyperparameter. A good learning rate should be small enough to avoid oscillations around
minima but high enough to approach a minimum efficiently. A good estimate is given by the
Robbins Monro condition:

∑
k

ηk = ∞, (4.6)

∑
k

η2
k < ∞. (4.7)

As the choice of learning rate will not be perfect for every part of the problem’s topology,
momentum, ν, can be introduced as a second parameter to the optimiser [31]. The effect desired
is twofold; momentum should increase the learning rate in the direction of the minimum

28 4th April 2019 20:44

4.2 Neural Networks

and lower it when approaching said minimum. Momentum scales each step by how aligned
previous steps were, meaning it will allow avoiding local minima or moving slowly along a
slope. This is accomplished by enlarging steps at the beginning of the training but diminishing
them at the end close to the minimum. It promises to speed up the training with less risk
of large oscillations, which is an effect of high learning rates. Momentum also takes a single
scaling hyperparamter α and is updated each step in the following way:

ν′ = αν− η
1
m
∇θ ∑

j
L(f (ŷj; θ), yj), (4.8)

θ′ = θ + ν′. (4.9)

Alternatively one can use Nesterov momentum [31], which is a more advanced adoption of
momentum as it updates the step a further time after applying the gradient:

ν′ = αν− η
1
m
∇θ ∑

j
L(f (ŷj; θ + α× ν), yj), (4.10)

θ′ = θ + ν′. (4.11)

Finally, it can be helpful to decrease the learning rate of the network stepwise while approaching
a minimum to avoid oscillations or even missing the minimum completely. This can be
accomplished by the hyperparameter of learning rate decay. It simply decreases the learning
rate in each iteration, t, by a small hyperparamter, φ, following the assumption that smaller
steps are sufficiently close to the minimum [31]. The learning rate is then defined as:

η′ =
η

1 + φt
. (4.12)

4.2.4 Adaptive optimisers

In addition to the merely gradient based optimisers, there are adaptive optimisers. Learning
rate and momentum as previously described are difficult to tune to every part of the training
process as the topology of the problem might rapidly change. Therefore adaptive optimisers
update their parameters based on the training process. From all of the adaptive optimisers [31]
Adam is probably the most popular [32]. Adam updates both its learning rate and momentum
over the course of the training based on an exponentially decaying average of past gradients
and squared gradients. The average makes sure that the parameters keep getting updated
based on past steps. They should be decaying, as otherwise, the parameters would rapidly
shrink. The decay of the averages is defined by a hyperparameter β resulting in this gradient
definitions:

ĝ2 =
∑ g2

1− βt
1

, (4.13)

4th April 2019 20:44 29

Chapter 4 Machine Learning

ĝ =
∑ g

1− βt
2

. (4.14)

The model’s parameters are then updated according to:

θ′ = θ +
η√

ĝ2 + ε
ĝ. (4.15)

Adam is often considered an excellent algorithm as it contains many corrections to hyperpara-
mters during the training, and thereby allows for easier optimisation. However, it also needs
more computational power.

4.3 Regularisation and Optimisation

Fluctuations and noise in the training sample can be a big problem for a model trained on
the sample. A neural network might pick noise and random fluctuations up as features of
its decision rule which basically is the process of overfitting. The network observes way more
features to work with than those actually present in reality or even in a different fraction of the
sample used by the training. The most extreme scenario is that the network is wide and deep
enough to pick up every single feature in the training sample. If that happens, the training error
becomes very low and indicates a very good decision rule. For a different sample this decision
rule is at most very unreliable but probably strictly wrong resulting in a high test sample error.
The network just picked up and remembered every single feature in the training sample instead
of general correlations and thus becomes a mask of the sample.

A possible way to solve this issue is stopping the training early or finding an elaborate
estimator to stop on. This way, noisy features would not yet be part of the discriminant. This
might in turn also lead to a suboptimal result of the overall training as one cannot be sure that
the correct features always get included first.

More sophisticated approaches are called regularisations of a neural network. The most
commonly used solution is a so called dropout layer described in the following subsection.
Additionally, a batch normalisation can have an effect of regularisation and is therefore introduced
in this section as well.

4.3.1 Dropout

Dropout can be described as an additional layer which attempts to hinder the network from
relying on less dominant features. In essence a dropout layer removes different nodes in each
iteration. This forces the network to build models that are not based on strong correlations
between nodes, making the weights less interdependent. In short, it means training several
neural networks depending on which nodes are turned on during a training epoch which it
keeps the training in motion for a high number of epochs. Figure 4.3 sketches the process.

Dropout is added to each layer of a network and can also be restricted to a subset of layers. It
slows down the training as the additional motion decelerates the process of finding a minimum.
However, it also accelerates each epoch slightly as it simplifies the network architecture.

30 4th April 2019 20:44

4.3 Regularisation and Optimisation

Without Dropout With Dropout

Figure 4.3: Sketch of network before and after the inclusion of dropout. On the left hand side dropout is
not applied and all nodes are connected. On the right hand side the dashed circles are nodes excluded
by dropout and therefore not connected to the other nodes.

4.3.2 Batch normalization

In supervised learning, the training result is strongly dependent on the set of data the network
is trained on. This means that the performance might change dramatically when the test data is
very different. one can imagine a classifier distinguishing between images of cars and apples. If
the training set contains predominantly green cars, the colour green might become a strong
indicator for the classification “car”. In general, the colour is not be a defining property of a car
and the network will perform slightly worse when trying to classify cars of a different colour.
Formally such a change of input is called a covariance shift.

A way to reduce the effect of covariance shift is batch normalization. The general output and
connections between nodes in a neural network is not necessarily limited, allowing for certain
connections to be extremely dominant and overshadowing other features. This is to be avoided
as the dominance of some features might just be present in the training sample. This can be
achieved by normalizing the output of each layer in the network to the total output and thereby
minimising the effects of strongly overrepresented features. This is done by normalizing each
output to the mini-batch mean µB and the mini-batch standard deviation σ2

B. The normalised
output, xi,norm, then becomes:

µB =
1
m ∑

i
xi, (4.16)

σ2
B =

1
m ∑

i
(xi − µB)

2, (4.17)

xi,norm =
xi − µB√

σ2
B + ε

. (4.18)

4th April 2019 20:44 31

Chapter 4 Machine Learning

4.4 Receiver operating characteristic curve

The receiver operating characteristic (ROC) curve is is a graphical plot for a binary classifier.
The y-axis shows the true positive rate (TPR); i.e., the precentage of correctly assigned labels of
value ŷ. The x-axis shows the false positive rate (FPR) and represents the percentage of wrongly
assigned ŷ labels. The ROC curve can be used to evaluate the quality of a model generated by a
classifier. A diagonal curve means the model is as good as a random guess. Curves below the
diagonal are worse than a random guess and can indicate that something is going wrong in the
training process. A good measure is the Area Under the Curve (AUC). The AUC indicates the
overall quality of a model.

4.5 Adversarial Neural Networks

The main part of this work is the examination and training of an adversarial neural network.
An adversarial neural network consists of a classifying network and a second network that
tries to regularise the output of the first classifying network. In this section, the concept of an
adversarial neural network is motivated and the underlying mathematics as originally stated
in paper [33] are presented. For more information about an approach directly tested on physics,
one can refer to "Learning to Pivot with Adversarial Networks" [4].

4.5.1 The adversarial neural network

Neural networks have been very successful in classification tasks but not so much for generative
tasks. This was the original problem that gave birth to the idea of a generative adversarial net-
work. Unfortunately generative networks often produce output that is very easy to distinguish
from real samples. The solution suggested is adding a classifier that tries to distinguish between
generated samples and real samples. As long as this adversary is able to accomplish this task,
the first network fails at its generative task. Training the two networks against each other
disincentivises the generative network from using the features not dominant in real samples.

In this work, the first network is not a generator but a classifier separating signal events
from background events in a Monte Carlo simulation. These simulations contain systematic
uncertainties and different samples represent a set of plausible data generation processes. The
classifier should not be too dependent on variables with high systematic uncertainties as the
network cannot account for differences in the training and testing sample or even in real data.
If the classifier has these strong dependencies on systematic uncertainties it might lead to a
high covariance shift.

Instead of a generated sample and a truth sample, a so called nominal sample and systematic
samples are used as input for the second network. Systematic samples have slightly different
distributions than the original samples because of changes to the variables with the systematic
uncertainties. Training the second network on determining whether it is looking at a nominal
or a systematic sample allows to estimate how strongly the model depends on variables with
high systematic uncertainties. Training the classifier against the adversarial network promises
to reduce the effect of systematic uncertainties on the model. If the topology of the problem

32 4th April 2019 20:44

4.5 Adversarial Neural Networks

allows for it, this should render the model generated by the classifier pivotal. That means it
does not depend on the unknown values of the nuisance parameters.

Mathematically, this comes down to a minimax decision rule or a competition between two
neural networks. The classifier is referred to as Net1 and the adversary as Net2 and the problem
becomes:

min
Net1

max
Net2

V(Net1, Net2) = Ex∼ρdata
[logNet1(x)] + Ez∼ρsys

[log(1− Net2(z))]. (4.19)

V(Net1, Net2) is the combined value function for the two adversary networks. The first
network is trained to be an optimal classifier, called classifier, represented by logNet1(x) while
the second network, called the adversary, is trained to distinguish between the nominal and
systematics distribution z ∼ ρsys represented by log(1− Net2(z)).

In theory, the first classifier should be trained slowly and kept close to its optimum while
the second network slowly learns and allows the first network to adapt to it. This is achieved
by training the two networks successively over multiple iterations using a combined value
function. A combined loss function is used as the value function. It is just the difference
between the two separate loss functions with a hyper-parameter, λ, to control the impact of the
adversary as shown in equation (4.20):

L = Lnet1 − λLnet2. (4.20)

In the first step of each iteration, the first network is trained using the combined loss function,
L. In the second step, the adversary is trained using its simple loss function Lnet2. Each of the
networks has the usual set of hyper-parameters to optimise explained in detail in the previous
sections

For this thesis, the adversarial network is set up by building a classifying network. The
information of the classifier is then fed into both the classifier’s output layer and the adversarial
network creating a second model based on the first network’s model. The networks are then
trained successively controlling the combined and separate losses. Figure 4.4 shows a sketch of
the setup. The hyperparameter λ is set to tune the impact of the second network on the model.
A high λ leads to a very pivotal model but can also decrease the overall quality of the classifier.

In order to better understand the figures shown in chapter 6, the three loss values of an
adversarial neural network will be introduced as the last part of this chapter. The first loss
belongs to the classifier and is expected to first increase as the adversary finds a good model
and to decrease once a more pivotal model is found. The second loss displays the adversary’s
performance ideally decreasing at first to then increase and saturate as a pivotal model renders
it impossible to extract any information. Lastly the combined loss is displayed showing the
overall performance and decreasing as good models are found for both the classifier and the
adversary. Figure 4.5 shows an example for these loss functions taken from the paper "Learning
to Pivot with Adversarial Networks" [4].

4th April 2019 20:44 33

Chapter 4 Machine Learning

Figure 4.4: Sketch of the adversarial network setup. The classifier is shown in blue. Its output is fed
into the adversary, indicated by the green square. The dependency on the nuisance parameter and the
combination is shown by the red square. This way the two losses L f and Lr are generated. Furthermore
the training of the classifier immediately affects both output models. Sketch based on [4].

34 4th April 2019 20:44

4.5 Adversarial Neural Networks

Figure 4.5: Three losses of an adversarial network for λ = 10 taken from a toy example [4]. From top to
bottom the classifier, adversary and combined loss is presented. T is the number of training iterations.

4th April 2019 20:44 35

CHAPTER 5

Hyperparameter optimisation of a classifying
neural network

The adversarial neural network is based on a common classifying neural network, which is
trained on signal/background separation. The output of that classifier is then used as input
for the adversary to create a negative feedback for the classifier. Before the adversarial, second
network is added, the classifying network is optimised on its own to ensure that its setup is
sufficient for the classification task. During the adversarial training, this setup can be updated
if the structure is not optimised for the additional task of a model that is less sensitive to
systematic uncertainties.

This chapter describes the hyper-parameter optimisation of the first network starting with the
motivation of the input information. The second section explains the choice of the architecture
followed by the step-wise setup of the optimiser. Lastly regularisation of the network is tested
and described. The overall aim of the description is to provide some understanding on the
hyper-parameters available and their correlations. The impact of the hyper-parameters on the
training results is presented not only to introduce their function but also to motivate possible
solutions later on.

To train the network and test its performance, all its parts need to be in place. Therefore,
all hyper-parameters had to be initialized with values assumed to represent a reliable setup.
Initially, this was accomplished by starting with a very simple network using a minimal set of
hyper-parameters which were then developed to a more and more optimised network. The
results shown in this work are going to be based on the final choice of hyper-parameters,
where only one parameter is then varied at a time to explain the impact of a particular tuning.
Sometimes, this leads to the effects of a hyper-parameter to be less powerful. The already
optimised model is relatively stable, and, if no significant impact is visible, the plots are not
shown. For that reason, section 5.2 will already introduce the final network structure, which is
then explained and motivated step by step.

The structure was achieved within reason and the computational power constraints. There
certainly are hyper-parameters that deserve more attention, and in addition to that, there
are alternative setups for the whole network that were not tested. A further investigation of
network optimisation is, without a doubt, very promising.

4th April 2019 20:44 37

Chapter 5 Hyperparameter optimisation of a classifying neural network

5.1 Technical details

The artificial neural networks in this thesis were created using the Keras python library [31].
Keras is an application programming interface written in python and able to run on Tensor-
flow [34], CNTK [35] or Theano [36]. It was developed by google and summarises the necessary
calculations for running a deep neural network training in fast and easy modules. The backend
is the package responsible for the underlying vector calculations needed for the network setup
and training. In this work, the Tensorflow package was used as a backend.

5.2 Final setup of the network

This section describes the fully optimised classifier which is then, parameter-wise, varied during
this chapter to motivate the final network structure. The hyperparamters are listed and the
loss curve, the ROC curve, and the final separation are shown in figure 5.1. They are the main
tools a training performance is evaluated on in this thesis. For the sake of completeness, the
agreement between nominal and systematic response is also shown as it will be a standard
inclusion for the plots during the adversarial training.

• Input: 14 variables motivated by a BDT variable scan [37].

• Hidden layers: 6 ELU layers × 128 nodes each

• Output layer: 1 SIGMOID node

• Optimisation: SGD, learning rate = 0.06, momentum = 0.3, no nesterov, no decay

• Duration: 600 epochs

5.3 The input variables

Two sets of input variables were tested for the classifier. The first one is a set of simple kinematic
variables. This is tested to exploit a neural network’s ability to deduce all further information
from the complete basis of a system. The second set of variables uses more complex variables
based on the most significant variables for a boosted decision tree usage on a similar problem.
The variable sets used were: Figure 5.2 shows a comparison of the separation and the loss
curves for both variable sets. It is visible that for the set of simple variables the network runs
into overtraining after about 200 epochs visible in plot 5.2(d) because Losstrain and Losstest start
to diverge. This also results in a bad separation with a strong disagreement between the two
samples. One way overtraining could be avoided using simple kinematic variables would be
to stop earlier; in this case after about 200 epochs. There is an argument for testing a simple
set of variables for a shorter training duration. However, this optimisation process would be
a project of its own because all the other parameter would have to be optimised accordingly.
Furthermore, in this work one has to keep in mind that the network is supposed to be used
in adversarial setup later. This demands for a longer training period and a large number of

38 4th April 2019 20:44

5.3 The input variables

(a) (b)

(c) (d)

Figure 5.1: Figure (a) shows the response of the classifier. The solid lines represent the training sample
and the dashed lines the test sample. Figure (b) shows the difference for response in systematic and
nominal samples. The solid lines represent the nominal samples and the dashed line the systematic
sample. Figure (c) shows the ROC curve. The dashed line is the training curve and the solid line is the
test curve. Figure (d) diagrams the losses with dashed for test and solid for training.

4th April 2019 20:44 39

Chapter 5 Hyperparameter optimisation of a classifying neural network

Variable
pmiss

T
|ηjet1|
|ηjet1|
|ηlep1|
|ηlep2|
pT jet1
pT jet2
pTlep1
pTlep2
φjet1
φjet2
φlep1
φlep2

Table 5.1: Simple kinematic variables

Variable
mlep1 + mjet2

pTlep1 + pTlep2 + pmiss
T

pT jet1 + pT jet2
mlep1 + mjet1
pTlep1 − pT jet1
Rlep1 − Rjet2
Rlep1,lep2 − Rjet2
mlep2 + mjet1
pT jet2
Rlep1 − Rjet1
Rlep1 − Rjet1
Rlep2 − Rjet2
Centralitylep2 + Centralityjet2
Rlep2 − Rjet1

Table 5.2: Complex variables

features, with a strong separating potential, to be available. Otherwise the probability of finding
a classifier, less sensitive to a systematic uncertainty, decreases and the behaviour of the losses
has to supervised very carefully.

Showing an overall good performance, the set of complex variables, as suggested by the
boosted decision tree variable scan, performed in the analysis “Measurement of the cross-section
for the production of a W boson in association with a top quark at 13 TeV” was chosen [37].
Please note that the set of variables in the paper referred to does not always agree because the
set used in this work was just inspired by it.

5.4 The network architecture

The architecture of the neural network is formed by its nodes and layers. The choice of the
architecture is nontrivial and, as a lot of aspects of machine learning, not an exact science.
However, one can make some assumptions about the appropriate architecture. First of all, the
complexity of the model should about match the complexity of the task assigned. Although it
usually is not trivial to find an estimator for a task’s complexity and even less to match it to
a certain architecture, a test series often leads to a good estimate. Another possible starting
point is the amount of variables necessary to fully describe a system resulting in the minimum
variable number necessary to input in the network. This also gives a first estimate on how large
the architecture should at least be. Both the depth and the overall size of the model play a role.
A simplified way of explaining these two properties is by saying that the depth defines how
often the input is processed while the number of nodes is the number of features that can be
kept during each step of processing.

In general, an architecture that is too deep and wide would learn training set related features

40 4th April 2019 20:44

5.4 The network architecture

(a) (b)

(c) (d)

Figure 5.2: Figure (a) and figure (b) show the separation for the complex and simple variables respectively.
The losses for the variable sets are depicted in figure (c) and figure (d).

too fast, meaning it overtrains before it finds a good minimum. This can be seen in an early
divergence between the training loss and the test loss. An architecture too simple is not able
to pick up the features of the task at all resulting in no learning. In other words, the loss stays
constant or changes very slowly.

In this work, a test-series was performed. The network was trained for a wide range of
combinations of nodes and layers; nodes ∈ [8, 512] and layers ∈ [1, 10]. For the sake of
simplicity, the number of nodes per layer was kept constant during each training. Two variables
were then plotted against the size of the architecture. First, the overall smallest loss the model
achieved during the training was plotted. The other variable was the minimal difference
between the training and the test loss. To keep it simple the complexity of the architecture
was defined as the product of nodes and layers. These are certainly not the most sophisticated
indicators for the model’s complexity and its performance. However, the plots do allow for
educated guesses for a good choice of architecture.

Figure 5.3(a) shows that more complex architectures also achieve smaller loss values. This,
unfortunately is not a clear estimator for overall performance since heavily overtrained net-
works will achieve low loss values as well. Therefore, a second estimator was taken into account.

4th April 2019 20:44 41

Chapter 5 Hyperparameter optimisation of a classifying neural network

Figure 5.3(b) shows the minimal difference between Losstrain and Losstest achieved during the
whole training process. There are two regions showing the minimum difference. The first
region includes simple architectures. This, however, is a result of a slow learning process. In
this case, the respective overall loss is not minimal and the network’s separation power is very
low. The second region, with a complexity of 500 to 800, was used as the region of choice; before
heavy overtraining occurs. As a result, a more complex architecture in this region, comprising
6 layers with 128 nodes each, was chosen. Although this choice seems fairly arbitrary at this
point, there is arguments for a complex architecture as it can always be regulated using dropout
if need be. Additional prove that further increasing the architecture leads to overtraining can be
seen in the loss for a complex architecture in figure 5.4. Here the overtraining becomes visible
in the difference between the two curves and their overall odd behaviour. Here the two loss
functions are not only diverging but the test loss also shows non-linear behaviour around 400
epochs. This is usually not expected because once a feature only relevant for the training set
has been included it stays problematic.

-2.0⋅10
-4

0.0⋅10
0

2.0⋅10
-4

4.0⋅10
-4

6.0⋅10
-4

8.0⋅10
-4

1.0⋅10
-3

1.2⋅10
-3

 0 100 200 300 400 500 600 700 800 900 1000 1100

M
in

im
a

l
lo

s
s

Nodes×Layers

(a) Minimal loss

1.4⋅10
-5

1.5⋅10
-5

1.6⋅10
-5

1.7⋅10
-5

1.8⋅10
-5

1.9⋅10
-5

2.0⋅10
-5

2.1⋅10
-5

2.2⋅10
-5

2.3⋅10
-5

2.4⋅10
-5

 0 100 200 300 400 500 600 700 800 900 1000 1100

∆
lo

s
s

Nodes×Layers

(b) Minimal loss difference

Figure 5.3: Figure (a) shows the minimal overall loss achieved during the training for the range of
architectures. Figure (b) shows the minimal difference between Losstrain and Losstest achieved.

In addition to the choice of the architecture, the activation function for the layers has to be set.
Two different activation functions are used in the neural network. The main function connects
the nodes in the hidden layers while the last one converts the output to a value between 0 and
1. For the output the sigmoid function is a natural choice because we look at two possible labels
for the outcome: signal and background. Therefore, no other activations were tested. For the
hidden layers ELU and RELU were tested. Figure 5.5 shows a comparison of the ROC curve and
the loss development for both activation-functions. For RELU, a strong disagreement between
training- and test-sample occurs and ELU became the activation function of choice. Further
activation-functions were not tested due to time constraints.

5.5 Setup of the optimisation

For the most part of the optimisation, SGD was used and its tuning is shown in detail in
subsection 5.5.2. Adam was also tested but not fully tuned, due to constraints on time and

42 4th April 2019 20:44

5.5 Setup of the optimisation

0 100 200 300 400 500 600

Epoch

0.00116

0.00118

0.00120

0.00122

L
o
s
s

Losstest

Losst rainL
o
s
s

Figure 5.4: Loss function for the classifier for 8 layers and 512 nodes each. A large disagreement between
the two curves is visible which is a sign for overtraining.

computational resources. In subsection 5.5.1, a brief overview of the performance using Adam
is given.

5.5.1 Choice of the optimiser

A classic gradient-based optimiser, SGD, is compared to the adaptive optimiser, Adam. Fig-
ure 5.6 compares the loss development for both optimisers. It is obvious that Adam behaves
strangely and it was therefore discarded. It is possible that Adam could outperform SGD for a
better tuning of its hyper-parameters and it certainly is worth testing out if the computational
power is provided.

5.5.2 Tuning the optimiser

As described in section 4.2.3, an optimiser has several hyper-parameters of its own. In this
section, the learning rate, the momentum with the option of Nesterov, and the decay parameter
will be probed. For the learning rate, a range of values between a small learning rate of 0.001
and high learning rates up to 0.5 were tested to investigate the effect on the network’s ability
to approach a minimum. The choice was based on how high the oscillations of the losses
are and how efficiently the training converges. High learning rates were discarded for an
increased probability of overtraining and a lot of unwanted oscillations while small learning
rates made the training unnecessarily slow and inefficient. Figure 5.7 shows a comparison

4th April 2019 20:44 43

Chapter 5 Hyperparameter optimisation of a classifying neural network

(a) (b)

(c) (d)

Figure 5.5: Figure (a) and figure (b) show the losses for ELU and RELU respectively. The ROC curves for
the different activation-functions are diagrammed in figure (c) and figure (d).

(a) (b)

Figure 5.6: Loss curves for the chosen network architecture using SGD (a) and Adam (b).

44 4th April 2019 20:44

5.6 Regularisation

of the network losses for a small learning rate of 0.001 in subfigure 5.7(a) and a relatively
high learning rate of 0.2 in subfigure 5.7(b). For the small learning rate there are no signs of
overtraining and no oscillations visible. However, the training converges slowly. For a high
learning rate the Losstrain and Losstest show larger divergence and each curve shows more
oscillations individually. In the end, an intermediate learning rate of 0.06 is chosen. In this

0 1 2 3 4 5 6
Epoch 1e2

1.10

1.12

1.14

1.16

1.18

1.20

1.22

1.24

1.26

Lo
ss

1e−3
Losstest
Losstrain

(a)

0 1 2 3 4 5 6
Epoch 1e2

1.02

1.04

1.06

1.08

1.10

1.12

1.14

1.16

Lo
ss

1e−3
Losstest
Losstrain

(b)

Figure 5.7: Loss behaviour for learning rates of different scales. Figure (a) shows losses for 0.001 and
figure (b) for 0.2.

setup, dropout is used. That makes it a bit more difficult to see the clear signs of overtraining
as it can be avoided for many setups. For a plot that shows this, see section 5.6.1.

Like the learning rate, the momentum was scanned over a wide range of values. Again, the
risk of overtraining and the amount of oscillations was evaluated against the overall training
efficiency. This resulted in a final value of 0.3. In addition, the test of using Nesterov momentum
did not lead to any significant effects. It was therefore not utilized to avoid using unnecessary
computational power.

The decay parameter was tested to see its effect on the loss behaviour. Figure 5.8 shows
the standard loss behaviour compared to losses for a decay value of 1× 10−6. When decay is
used, the losses in subfigure 5.8(b) become slightly more stable and plateau a bit earlier and at
a greater value. Overall, no significant improvement is visible. For that reason, decay is not
included in the final setup of the classifier. It was kept as an option for the later combination of
the classifier and the adversary where it might help keeping the model close to the optimum
while slowly updating to a model less sensitive to systematics.

5.6 Regularisation

The two regularisation tools tested were dropout-layers and batch-normalisation layers. The
main purpose of dropout is regularising a network while batch-normalisation focuses on
keeping all outputs on the same order which indirectly also helps the regularisation of the
network. Dropout is tested for a range of values defining the percentage of nodes turned off per
iteration step. Batch-normalisation is just tested in the default setup to investigate its effects.

4th April 2019 20:44 45

Chapter 5 Hyperparameter optimisation of a classifying neural network

(a) (b)

Figure 5.8: Comparison of usual loss behaviour and loss behaviour including a decay paramter. Figure (a)
shows the losses without decay. Figure (b) shows the losses for a decay parameter of 1× 10−6

5.6.1 Dropout

A dropout layer is added to each hidden layer of the network. Figure 5.9 shows the impact of
dropout on the behaviour of the losses. For only 1 percent dropout, compared to the default 10
percent, overtraining occurs relatively early. For a very high dropout of 80 percent the losses
behave strangely. The curve becomes unnaturally linear in some regions and converges less
efficiently. In conclusion, dropout is a valuable addition to the network. It makes changing the
architecture and the optimiser more forgiving and is a simple way to adjust a network without
rearranging all hyper-parameters.

0 1 2 3 4 5 6
Epoch 1e2

1.000

1.025

1.050

1.075

1.100

1.125

1.150

1.175

Lo
ss

1e−3
Losstest
Losstrain

(a)

0 1 2 3 4 5 6
Epoch 1e2

1.20

1.22

1.24

1.26

1.28

1.30

Lo
ss

1e−3
Losstest
Losstrain

(b)

Figure 5.9: Comparison of usual loss behaviour and loss behaviour including high dropout. Figure (a)
shows the losses for a dropout of 0.01. Figure (b) shows the losses for a dropout of 0.8

46 4th April 2019 20:44

5.6 Regularisation

5.6.2 Batch normalisation

Batch normalisation was added to every deep layer and it had no significant effects on the
output. Either the model does not develop any overly dominant features or dropout already
does a sufficient job of normalisation. The extra layers were discarded for the classifying
network to avoid an increase in computational time.

4th April 2019 20:44 47

CHAPTER 6

Adversarial Neural Network

In this chapter, the setup and training of the Adversarial Neural Network is described. The
Network did not achieve the desired results in its initial configuration. For this reason, different
configurations for the implementation of the network structure are presented in addition
to the hyper-parameter investigations. In total three main approaches to the adversarial
neural network were tested. The first one uses the understanding earned from training the
classifier and the original approach introduced in the paper “Learning to pivot with Adversarial
Networks” [4]. The second approach uses the last hidden layer of the classifier as input for the
adversary instead of using the output of the classifier. Lastly, the information of the hidden
layer is compressed to a smaller layer before being transferred to the adversary.

The first section of the chapter focuses on the initial run of the ANN using the base network
presented in chapter 5. The results are investigated and the hyper-parameters are adapted
using an initial setup for the second network. The problems with this setup are explained and
possible reasons are listed. The second section describes the approach of using hidden layers as
input. The results are compared to the initial approach and conclusions are drawn. The third
approach deals with further adapting the information from the hidden layer and is described
in the third section. Finally, the approaches are compared and possible further steps are listed.

Prerequisites

The technical details for the setup are the same as for the classifying network as introduced in
section 5.1. The adversarial setup uses the classifier’s general setup and architecture trained
and tuned in chapter 5 as a basis. For the classical setup, this output is used as input for the
adversarial network.

In general, both the classifier and the adversary are pre-trained. That means they are trained
on their tasks without using a combined loss-function to generate better starting conditions for
the adversarial training iterations. In addition, observing the losses of the networks during the
pre-training indicates whether the networks influence each other.

4th April 2019 20:44 49

Chapter 6 Adversarial Neural Network

6.1 Approach I: classical neural network

As already stated, the initial setup uses the classifier as trained in chapter 5 and an adversary
inspired by this structure. Optimisation and activation remained the same while the architecture
was simplified to factor the one-dimensional input into the system. Figure 6.1 shows the results.
The network response 6.1(b) has almost no signs of a separation. Furthermore, the systematic
distribution seems to be more pushed to the background distribution which is completely
opposite to the original goal. It hints that modifications to the setup should be made. While
the loss for both networks decreases, no minimum that hinders the adversary from learning is
found. The expected increase in adversarial loss does not occur. The early spike in the losses
comes from the pretraining losses.

(a) (b)

Figure 6.1: Results for an adversarial neural network using the classic approach and hyper-parameters
adopted from the classifier. Figure (a) shows the losses; top to bottom: classifier, adversary, and combined
loss. Figure (b) shows the separation for the nominal and the systematic sample; solid blue for nominal,
dashed green for systematic, and red for the background.

It becomes clear that the optimised hyper-parameters for the classifier are not suitable for the
task of training an adversarial neural network. This is an important insight because it means
that the adversary is not something one can just add to a model to improve its sensitivity to a
nuisance parameter. Instead, it is an integral aspect of a whole training procedure of its own.
The next step taken during the analysis, presented here, is to try to investigate further what the
performance of the combined network is strongly correlated with and how to understand what
the network suffers from.

A hyper-parameter scan was performed in order to achieve a better performance for the
adversarial neural network setup. The results for a very low learning rate and a non-existing
momentum are shown in figure 6.2. With a slow optimisation the training becomes more stable
and both networks can learn. This is assumed to be due that in an adversarial training, not
just a minimum is sought. Instead, the classifier is first moved close to a minimum and then
supposed to stay close to that model of decent classification, while also slowly adapting to
features less sensitive to the systematic uncertainty. At some point, the adversarial loss stops
decreasing. However, it does not increase again and in the response a difference between

50 4th April 2019 20:44

6.2 Approach II: hidden layer input

nominal and systematic sample is visible
As even with these updated hyper-parameters no model is found that is sufficiently inde-

pendent on systematics, another change to the network has been elaborated. On their own both
networks improve their performance but in combination the classifier does not find a model
that significantly downgrades the performance of the adversary. The worst case scenario is
that this is due to no such model existing. It is very well possible that for this particular task
there is no training that is independent of systematics. A simple change would be the set of
input parameters. However, this would cause a whole new training problem and a subsequent
hyper-parameter optimisation. For that reason, the input of the adversary was looked into. At
this point, the adversary is just fed the sigmoid-output of the single, final node of the classifier.
As mentioned earlier the amount of variables and the complexity of the architecture should be
scaled with the task. Possibly the single output is sufficient to see a systematic dependency but
not to improve the model using this insight. Furthermore, given the separation between tW and
tt is small and the systematic to be minimised is their interference term, the classifier network’s
output may not be enough for both networks to find an insensitive minimum. Approach II is
based on this thought.

(a) (b)

Figure 6.2: Results for an adversarial neural network using low learning rate and no momentum for the
classifier. Figure (a) shows the losses; top to bottom: classifier, adversary, and combined loss. Figure (b)
shows the separation for the nominal and the systematic sample; solid blue for nominal, dashed green
for systematic, and red for the background.

6.2 Approach II: hidden layer input

The amount of information given to the adversary is the output of one single node. This
does not justify the usage of complex architecture and it allows no insight into the deeper
dependencies of the classification model. Alternatively one can use the last hidden layer of
the classifier which can be described as the final model the sigmoid-decision is based on. This
is not fully correct as all dependencies of the model created in the last step are excluded this
way. Nevertheless, it is a viable approximation worth testing. This approach simply inputs
the last hidden layer into the adversary without changing any other hyper-parameters. A

4th April 2019 20:44 51

Chapter 6 Adversarial Neural Network

hyper-parameter scan is then performed to test the behaviour of the network. Using this setup

0 50 100 150 200 250 300 350 400

0.0925

0.0950

0.0975 Losstest
net1

Losstrain
net1

0 50 100 150 200 250 300 350 400
0

1

Lo
ss

0.1 Losstest
net2

0.1 Losstrain
net2

0 50 100 150 200 250 300 350 400
Epoch

1

0 Losstest
net1 0.1 Losstest

net2
Losstrain

net1 0.1 Losstrain
net2

(a) Losses

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Receiver Operating Characteristic
AUCtrain = 0.73
AUCtest = 0.73

(b) ROC-curve

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Network response

0

2

4

6

8

10

12

Ev
en

t f
ra

ct
io

n

Sigtrain

Bkgtrain

Sigtest

Bkgtest

(c) Separation

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Network response

0

2

4

6

8

10

12

Ev
en

t f
ra

ct
io

n
Signom.
Bkgnom.
Sigsyst.

(d) Systematic-Sensitivity

Figure 6.3: Performance plots for the second approach. Both a slightly better separation and a lower
sensitivity are visible.

the losses behave as desired. Figure 6.3 summarises the results. At one point the adversary
fails to gain any information while the classifier keeps on learning and the combined loss
decreases. The rise of the adversary’s loss looks very steep but this is only a problem of the
scale. In hindsight the model is very unstable and for many hyper-parameter setups it just stops
working properly. Furthermore, the sensitivity to systematic samples does visibly improve. The
improvements are small but the overall shape of the nominal and systematics distribution have
become more alike and systematic distribution is less stretched to the background. A further
interesting behaviour was achieved for a relatively high learning rate of 0.2. In this case the
loss of the adversary increases later. The curve and separation is shown in figure 6.4. After the
usual 400 training epochs the model seems to still be changing. There is a possibility that a
better model for a higher epoch count could be achieved using this setup. It also shows that
the optimisation of the hyperparameters has significantly different effects depending on which
approach is chosen.

52 4th April 2019 20:44

6.3 Approach III: compressed hidden layer input

0 50 100 150 200 250 300 350 400
0.0910

0.0915

0.0920 Losstest
net1

Losstrain
net1

0 50 100 150 200 250 300 350 400

0.0056

0.0058

Lo
ss

0.1 Losstest
net2

0.1 Losstrain
net2

0 50 100 150 200 250 300 350 400
Epoch

0.0855

0.0860

0.0865

Losstest
net1 0.1 Losstest

net2
Losstrain

net1 0.1 Losstrain
net2

(a) Loss

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Network response

0

2

4

6

8

10

12

14

Ev
en

t f
ra

ct
io

n

Signom.
Bkgnom.
Sigsyst.

(b) Separation of systematic and nominal in the
response.

Figure 6.4: Behaviour of approach II for a learning rate of 0.2 showing a loss behaviour that could
motivate a deeper analysis.

6.3 Approach III: compressed hidden layer input

After using only a single input node in the classical approach and 128 nodes in the second
approach, an intermediate number of inputs is tested. For approach III, a second to last layer
with only 16 nodes is added to the classifier and then fed into the adversary. This way the input
dimension is closer to the dimension of the classifier. In addition, it promises to control the
instability of the second approach.

Parallel to the other approaches, a hyper-parameter scan was performed. Figure 6.5 shows
the result for an effective setup. The setup is about as unstable as that of approach II. Loss
curves for different learning rates are shown in figure 6.6. The learning rate of 0.06 as originally
used for the classifier performed badly for the classical, adversarial approach. For approach
III it behaves different and in the end of the desired behaviour is visible. This is a feature that
deserves more research. Furthermore figure 6.6(b) diagrams the odd behaviour for the usually
very good learning rate of 0.001.

6.4 Summary

In conclusion, the approach for an adversarial neural network to reduce a model’s sensitivity
on systematic uncertainties, as suggested in the paper “Learning to pivot with Adversarial
Networks” [4], has not been successful at achieving the promised results for a tW-tt-separation.
It was, however, possible to show the desired behaviour of the two adversarial networks. It
has been shown that the input to the adversary is essential and a part of the analysis that
would deserve more research. Furthermore, the adversarial neural network has proven to
be a structure of its own rather than just two arbitrary classifiers combined. They have to be
built around an unhurried optimisation process allowing both networks to slowly learn from
different areas of the system’s topology.

4th April 2019 20:44 53

Chapter 6 Adversarial Neural Network

0 50 100 150 200 250 300 350 400

0.095

0.100 Losstest
net1

Losstrain
net1

0 50 100 150 200 250 300 350 400
0

1

Lo
ss

0.1 Losstest
net2

0.1 Losstrain
net2

0 50 100 150 200 250 300 350 400
Epoch

1

0
Losstest

net1 0.1 Losstest
net2

Losstrain
net1 0.1 Losstrain

net2

(a) Loss-curves

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Receiver Operating Characteristic
AUCtrain = 0.73
AUCtest = 0.73

(b) ROC-curve

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Network response

0

2

4

6

8

10

12

14

Ev
en

t f
ra

ct
io

n

Sigtrain

Bkgtrain

Sigtest

Bkgtest

(c) Separation

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Network response

0

2

4

6

8

10

12

14

Ev
en

t f
ra

ct
io

n

Signom.
Bkgnom.
Sigsyst.

(d) Systematic sensitivity

Figure 6.5: Performance of approach III. The plots show no significant improvements. The losses behave
as expected.

0 50 100 150 200 250 300 350 400
0.0905

0.0910

0.0915 Losstest
net1

Losstrain
net1

0 50 100 150 200 250 300 350 400

0.00551

0.00552

0.00553

Lo
ss

0.1 Losstest
net2

0.1 Losstrain
net2

0 50 100 150 200 250 300 350 400
Epoch

0.0850

0.0855

0.0860 Losstest
net1 0.1 Losstest

net2
Losstrain

net1 0.1 Losstrain
net2

(a)

0 50 100 150 200 250 300 350 400

0.10

0.11
Losstest

net1
Losstrain

net1

0 50 100 150 200 250 300 350 400
0.0

0.2

0.4

Lo
ss

0.1 Losstest
net2

0.1 Losstrain
net2

0 50 100 150 200 250 300 350 400
Epoch

0.2

0.0

Losstest
net1 0.1 Losstest

net2
Losstrain

net1 0.1 Losstrain
net2

(b)

Figure 6.6: Miscellaneous loss plots for approach III. Figure 6.6(a) shows the losses for a learning rate of
0.06 and figure 6.6(b) for 0.001.

54 4th April 2019 20:44

CHAPTER 7

Conclusions

The work presented in this thesis focussed on two issues of neural networks. The first one
concerns the behaviour of neural networks and adversarial neural networks for classification
tasks in particle physics. Here, the influence of the hyper-parameters on network performance
for different setups was tested in order to understand how a classifier should be set up and
how it can be upgraded to an adversarial neural network.

The second one addresses the possibilities offered by adversarial neural networks to limit the
influence of systematic uncertainties on a classification model. In particular, the technique of an
adversarial network was tested on the tW-tt separation and the systematic uncertainty arising
from the different simulation approaches of DR and DS for the interference term at NLO.

A fundamental knowledge of neural networks and a set of hyper-parameters were discussed.
It was shown that a good set of parameters is not only dependent on the topology of the
problem but also massively depends on the setup of the network structure. A good classifier
does not generally also form a good basis for an adversarial network structure. Instead, an
adversarial network requires a low learning rate and above all a slow optimisation because
more features of the problem need to be taken into account. This is due to the sensitivity to
a certain systematic being added to the primary task of classification. The initial optimum,
established for the classifier alone, that allowed for straightforward and fast training is not the
desired model anymore.

Moreover, the adversarial neural network tested in this work is relatively unstable and the
outcome changes significantly when hyper-parameters are slightly adjusted. This effect was not
observed for the classifying network and resulted in a laborious optimisation process, which
made the constraint of computational power even more significant. The most important feature
of the adversarial network, investigated with the three approaches presented in chapter 6, is the
dimension of input it is provided with. There is a strong argument that only a single node, as
classically suggested, does not justify a complex adversarial network architecture. In addition
to that, the general information lost when looking only at the final node should not be neglected
during the setup. The performances achieved were strongly dependent on the shape of input.

Lastly, a significant improvement on the sensitivity of the classifier for the systematic sample
could not be achieved. Although the classifier was able to generate a model that rendered
its adversary unable to learn, no significant differences were visible in the distribution. The

4th April 2019 20:44 55

Chapter 7 Conclusions

shapes changed but, at the stage of this work, no sophisticated argument can be made for an
improvement. In conclusion, switching from the single-node-input to a more complex input
for the adversary seems to be the more promising approach. Combined with a different set
of variables and a detailed hyper-parameter scan one might be able to achieve a reduction of
sensitivity while keeping the quality of the overall classification constant. For similar problems
it would be interesting to test out the consequences of only providing the data actually affected
by the systematic uncertainties to the adversary. In this work the systematics only affected the
tW-channel and the tt was still considered nominal. This could have a strong bias effect on the
result.

Neural networks in general are a promising technique for researchers in particle physics.
The variety of highly different structures and hyper-parameters of the networks make them a
potentially powerful tool for different scopes of research. An improvement in the sensitivity to
systematics has been achieved for different researches using adversarial network approaches.
Although a small effect on the sensitivity was achieved in this work, the sensitivity was
not reduced as far as hoped for. Perhaps the topology of the problem and the shape of the
systematics mean that the task has no model that is insensitive. However, the strategies
presented in this work, pave the way for further research focusing on the approach and the
appliance of machine learning techniques for data analysis in particle physics.

56 4th April 2019 20:44

Bibliography

[1] The Lego Group, https://www.lego.com/de-de, Accessed: 2019-03-22 (cit. on p. 1).

[2] Sascha Mehlhase, https://build-your-own-particle-
detector.org/models/atlas-lego-model-mini/?lang=de,
Accessed: 2019-03-23 (cit. on p. 1).

[3] M. Thomson, Modern Particle Physics, 6th ed., Cambridge University Press, 2016,
ISBN: 9781107034266 (cit. on pp. 1, 11).

[4] G. Louppe, M. Kagan and K. Cranmer, Learning to Pivot with Adversarial Networks, (2016),
arXiv: 1611.01046 [stat.ME] (cit. on pp. 1, 34–37, 51, 55).

[5] Wikipedia contributors, Elementary particles included in the Standard Model,
[Online; accessed 03-March-2019], 2006,
URL: https://commons.wikimedia.org/wiki/File:
Standard_Model_of_Elementary_Particles.svg (cit. on p. 6).

[6] M. Tanabashi et al., Review of Particle Physics, Phys. Rev. D 98 (3 2018) 030001,
URL: https://link.aps.org/doi/10.1103/PhysRevD.98.030001 (cit. on p. 6).

[7] D. Griffiths, Introduction to Elementary Particle Physics, 2nd ed., Wiley-VCH, 2008,
ISBN: 9783527406012 (cit. on p. 11).

[8] ATLAS Collaboration, The ATLAS Experiment at the CERN Large Hadron Collider,
JINST 3 (2008) S08003 (cit. on p. 13).

[9] L. Evans and P. Bryant, LHC Machine, JINST 3 (2008) S08001 (cit. on p. 13).

[10] S. Chatrchyan et al., The CMS Experiment at the CERN LHC, JINST 3 (2008) S08004
(cit. on p. 13).

[11] A. A. Alves Jr. et al., The LHCb Detector at the LHC, JINST 3 (2008) S08005 (cit. on p. 13).

[12] K. Aamodt et al., The ALICE experiment at the CERN LHC, JINST 3 (2008) S08002
(cit. on p. 13).

[13] E. Mobs, The CERN accelerator complex - August 2018., (2018), General Photo,
URL: http://cds.cern.ch/record/2636343 (cit. on p. 14).

[14] J.-L. Caron, “Overall view of LHC experiments.”,
AC Collection. Legacy of AC. Pictures from 1992 to 2002., 1998,
URL: https://cds.cern.ch/record/841555 (cit. on p. 15).

[15] N. Wermes and H. Kolanoski, Teilchendetektoren Grundlagen und Anwendungen, 1st ed.,
Springer Verlag, 2016, ISBN: 9783662453490 (cit. on pp. 15, 18).

4th April 2019 20:44 57

https://www.lego.com/de-de
https://build-your-own-particle-detector.org/models/atlas-lego-model-mini/?lang=de
https://build-your-own-particle-detector.org/models/atlas-lego-model-mini/?lang=de
http://arxiv.org/abs/1611.01046
https://commons.wikimedia.org/wiki/File:Standard_Model_of_Elementary_Particles.svg
https://commons.wikimedia.org/wiki/File:Standard_Model_of_Elementary_Particles.svg
http://dx.doi.org/10.1103/PhysRevD.98.030001
https://link.aps.org/doi/10.1103/PhysRevD.98.030001
http://dx.doi.org/10.1088/1748-0221/3/08/S08003
http://dx.doi.org/10.1088/1748-0221/3/08/S08001
http://dx.doi.org/10.1088/1748-0221/3/08/S08004
http://dx.doi.org/10.1088/1748-0221/3/08/S08005
http://dx.doi.org/10.1088/1748-0221/3/08/S08002
http://cds.cern.ch/record/2636343
https://cds.cern.ch/record/841555

Bibliography

[16] J. Pequenao, “Computer generated image of the whole ATLAS detector”, 2008,
URL: http://cds.cern.ch/record/1095924 (cit. on pp. 16, 21).

[17] W. R. Leo, Teqhniques for Nuclear and Particle Physics Experiments, 2nd ed.,
Springer Verlag, 1994, ISBN: 3540572805 (cit. on p. 17).

[18] ATLAS Collaboration,
“The Pixel Detector of the ATLAS experiment for the Run2 at the Large Hadron Collider”,
Proceedings, 10th International Conference on Position Sensitive Detectors (PSD10): Surrey,
UK, September 7-12, 2014, vol. 10, 02, 2015 C02001,
arXiv: 1411.5338 [physics.ins-det] (cit. on p. 17).

[19] ATLAS Collaboration, Electron efficiency measurements with the ATLAS detector using the
2015 LHC proton-proton collision data, ATLAS-CONF-2016-024, CERN, 2016,
URL: https://cds.cern.ch/record/2157687 (cit. on p. 19).

[20] ATLAS Collaboration,
Topological cell clustering in the ATLAS calorimeters and its performance in LHC Run 1,
Eur. Phys. J. C77 (2017) 490, arXiv: 1603.02934 [hep-ex] (cit. on p. 19).

[21] M. Cacciari, G. P. Salam and G. Soyez, The anti-kt jet clustering algorithm,
JHEP 04 (2008) 063, arXiv: 0802.1189 [hep-ph] (cit. on p. 19).

[22] ATLAS Collaboration, Muon reconstruction performance of the ATLAS detector in
proton–proton collision data at

√
s =13 TeV, Eur. Phys. J. C76 (2016) 292,

arXiv: 1603.05598 [hep-ex] (cit. on p. 19).

[23] ATLAS Collaboration, Performance of b-Jet Identification in the ATLAS Experiment.
Performance of b-Jet Identification in the ATLAS Experiment, JINST 11 (2015) P04008. 127 p,
URL: http://cds.cern.ch/record/2110203 (cit. on p. 19).

[24] ATLAS Collaboration,
Optimisation of the ATLAS b-tagging performance for the 2016 LHC Run,
ATL-PHYS-PUB-2016-012, CERN, 2016,
URL: https://cds.cern.ch/record/2160731 (cit. on p. 19).

[25] ATLAS Collaboration, Performance of missing transverse momentum reconstruction with the
ATLAS detector using proton-proton collisions at

√
s =13 TeV, Eur. Phys. J. C78 (2018) 903,

arXiv: 1802.08168 [hep-ex] (cit. on p. 20).

[26] ATLAS Collaboration, The ATLAS Simulation Infrastructure, Eur. Phys. J. C70 (2010) 823,
arXiv: 1005.4568 [physics.ins-det] (cit. on p. 22).

[27] S. Agostinelli et al., GEANT4: A Simulation toolkit, Nucl. Instrum. Meth. A506 (2003) 250
(cit. on p. 23).

[28] ATLAS Collaboration, The ATLAS calorimeter simulation FastCaloSim,
Journal of Physics: Conference Series 331 (2011) 032053,
URL: https://doi.org/10.1088%2F1742-6596%2F331%2F3%2F032053
(cit. on p. 23).

[29] ATLAS Collaboration, Summary of ATLAS Pythia 8 tunes, ATL-PHYS-PUB-2012-003,
CERN, 2012, URL: https://cds.cern.ch/record/1474107 (cit. on p. 23).

58 4th April 2019 20:44

http://cds.cern.ch/record/1095924
http://arxiv.org/abs/1411.5338
https://cds.cern.ch/record/2157687
http://dx.doi.org/10.1140/epjc/s10052-017-5004-5
http://arxiv.org/abs/1603.02934
http://dx.doi.org/10.1088/1126-6708/2008/04/063
http://arxiv.org/abs/0802.1189
http://dx.doi.org/10.1140/epjc/s10052-016-4120-y
http://arxiv.org/abs/1603.05598
http://cds.cern.ch/record/2110203
https://cds.cern.ch/record/2160731
http://dx.doi.org/10.1140/epjc/s10052-018-6288-9
http://arxiv.org/abs/1802.08168
http://dx.doi.org/10.1140/epjc/s10052-010-1429-9
http://arxiv.org/abs/1005.4568
http://dx.doi.org/10.1016/S0168-9002(03)01368-8
http://dx.doi.org/10.1088/1742-6596/331/3/032053
https://doi.org/10.1088%2F1742-6596%2F331%2F3%2F032053
https://cds.cern.ch/record/1474107

[30] Kjell Magne Fauske,
URL: http://www.texample.net/tikz/examples/neural-network/
(cit. on p. 26).

[31] F. Chollet et al., Keras, https://keras.io, 2015 (cit. on pp. 28–31, 40).

[32] D. P. Kingma and J. Ba, Adam: A Method for Stochastic Optimization,
arXiv e-prints, arXiv:1412.6980 (2014) arXiv:1412.6980, arXiv: 1412.6980 [cs.LG]
(cit. on p. 31).

[33] I. J. Goodfellow et al., Generative Adversarial Networks,
arXiv e-prints, arXiv:1406.2661 (2014) arXiv:1406.2661, arXiv: 1406.2661 [stat.ML]
(cit. on p. 34).

[34] G. B. Team, TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems,
Software available from tensorflow.org, 2015, URL: http://tensorflow.org/
(cit. on p. 40).

[35] F. Seide and A. Agarwal, “CNTK: Microsoft’s Open-Source Deep-Learning Toolkit”,
Proceedings of the 22Nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD ’16, ACM, 2016 2135, ISBN: 978-1-4503-4232-2,
URL: http://doi.acm.org/10.1145/2939672.2945397 (cit. on p. 40).

[36] Theano Development Team,
Theano: A Python framework for fast computation of mathematical expressions,
arXiv e-prints abs/1605.02688 (2016), URL: http://arxiv.org/abs/1605.02688
(cit. on p. 40).

[37] ATLAS Collaboration, “Measurement of the cross-section for the production of a
W-boson in association with a top quark at 13 TeV”, ATL-COM-PHYS-2019-222, 2019,
URL: https://cds.cern.ch/record/2667560 (cit. on pp. 40, 42).

4th April 2019 20:44 59

http://www.texample.net/tikz/examples/neural-network/
https://keras.io
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1406.2661
http://tensorflow.org/
http://doi.acm.org/10.1145/2939672.2945397
http://arxiv.org/abs/1605.02688
https://cds.cern.ch/record/2667560

APPENDIX A

Monte Carlo simulations

The following section provides the technical details for the Monte Carlo simulations used in
this work. All of the sets are distributed by the SingleTop group at ATLAS. The sets used are
v23 sets from Release 21. They were filtered to only the 2j2b region.

DSID σ[pb] k-factor Tags
Single top-quark, tW-channel, DR
410648 4.0 0.94 e6615_e5984_s3126_r9364_r9315_p3409
410649 3.99 0.95 e6615_e5984_a875_r9364_r9315_p3526
Single top-quark, tW-channel, DS
410656 3.89 0.97 e6615_e5984_s3126_r10201_r10210_p3409
410657 3.97 0.95 e6615_e5984_s3126_r10201_r10210_p3409
Top-quark pair
410657 76.95 1.14 e6348_e5984_a875_r10201_r10210_p3554

Table A.1: MC samples used in this thesis.

4th April 2019 20:44 61

APPENDIX B

Pre-training losses

This chapter shows two exemplary loss curves during the pre-training. They have not been
shown in the main part. However, one can observe the dependency of the adversary on the
classifier. Secondly it can be seen that the adversary does not affect the classifier.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
1e1

0.925

0.950

0.975

Lo
ss

1e 1

Net1test
Net1train

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
Epoch 1e1

7.25

7.50

7.75

Lo
ss

1e 1

Net2test
Net2train

Figure B.1: Pre-training of the classifier. It is visible that even a normal training worsens the adversary’s
performance. It also indicates that the adversary really depends on the classifier.

4th April 2019 20:44 63

Appendix B Pre-training losses

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
1e1

9.14

9.15

9.16

Lo
ss

1e 2

Net1test
Net1train

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
Epoch 1e1

5.8

5.9

Lo
ss

1e 2

Net2test
Net2train

Figure B.2: Pre-training of the adversary. It is visible, that the adversary does not affect the classifier
directly.

64 4th April 2019 20:44

List of Figures

2.1 Standard Model of Particle Physics . 6
2.2 tt pair production feynman diagrams at LO . 8
2.3 Single-top-production diagrams . 9
2.4 Final state of a tW decay . 10
2.5 Comparison of the final state of a tt and tW event 10

3.1 Sketch of the LHC accelerator complex . 14
3.2 Sketch of the LHC ring. 15
3.3 Sketch of the ATLAS detector . 16
3.4 Scheme of the ATLAS detector’s detection procedure 21

4.1 Sketch of a typical neural network structure . 26
4.2 Network parameter nomenclature . 27
4.3 Dropout Sketch . 33
4.4 Adversarial setup sketched . 36
4.5 Exemplary loss of an adversarial network structure 37

5.1 Network performance of the classifier . 41
5.2 Performance of the classifier using different variables 43
5.3 Network performance’s dependency on the architecture 44
5.4 Classifier losses for a complex architecture . 45
5.5 Classifier performance for different activation functions 46
5.6 Classifier losses for different optimisers . 46
5.7 Classifier loss for different learning rates . 47
5.8 Performance of the classifier with decay . 48
5.9 Performance of the classifier for different dropout percentages 48

6.1 ANN results for a standard setup . 52
6.2 ANN results for optimised parameters . 53
6.3 ANN results approach II . 54
6.4 ANN approach II, high learning rate . 55
6.5 ANN results approach III . 56
6.6 Misc plots approach III . 56

B.1 Classifier pretraining . 65
B.2 Adversary pretraining . 66

4th April 2019 20:44 65

List of Tables

4.1 Selection of activation function . 29

5.1 Simple kinematic variables . 42
5.2 Complex variables . 42

A.1 DSID list . 63

4th April 2019 20:44 67

	Introduction
	Theoretical basics
	The Standard Model of Particle Physics
	Force carrier particles
	Matter particles

	Top-quark physics
	Top-quark production
	Top-quark decay
	The t-3mu -1mu W-3mu -1mu channel

	Kinematics of particle colliders

	The LHC and the ATLAS detector
	Large Hadron Collider
	The ATLAS detector
	The ATLAS coordinate system
	The Inner Detector
	The ATLAS calorimeter system
	The Muon Spectrometer
	Particle detection in the ATLAS detector

	t-3mu -1mu W-3mu -1mu event selection
	Monte Carlo simulations
	ATLAS simulation
	Systematic uncertainties in Monte Carlo simulations

	Machine Learning
	The concept of machine learning
	Neural Networks
	The input layer
	Decision making process
	Optimisers - Choosing the next step
	Adaptive optimisers

	Regularisation and Optimisation
	Dropout
	Batch normalization

	Receiver operating characteristic curve
	Adversarial Neural Networks
	The adversarial neural network

	Hyperparameter optimisation of a classifying neural network
	Technical details
	Final setup of the network
	The input variables
	The network architecture
	Setup of the optimisation
	Choice of the optimiser
	Tuning the optimiser

	Regularisation
	Dropout
	Batch normalisation

	Adversarial Neural Network
	Approach i: classical neural network
	Approach ii: hidden layer input
	Approach iii: compressed hidden layer input
	Summary

	Conclusions
	Bibliography
	Monte Carlo simulations
	Pre-training losses
	List of Figures
	List of Tables

