

Extrapolation study on tW & s-channel measurements

Rui Zhang University of Bonn On behave of tW and s-channel groups

Top workshop 11.05.2017

Introduction

Single top production

 \star Sensitive to CKM matrix element V_{tb}

□ tW channel

Fermionic propagator **+** Overlap/interference with tt production • diagram removal (DR) v.s. digram subtraction (DS)

R. Zhang

Top workshop

□ s-channel

★ Sensitive to new particles as a propagator **+** Probe anomalous couplings in an effective quantum field theory

tW channel

R. Zhang

Top workshop

Recap of the analysis

Event selection

Table 1: Summary of event selection criteria used in the analysis.

At least one jet with $p_{\rm T} > 25 \,\text{GeV}, |\eta| < 2.5$

Exactly two leptons of opposite charge with $p_{\rm T} > 20 \,{\rm GeV}$,

 $|\eta| < 2.5$ for muons and $|\eta| < 2.47$ excluding $1.37 < |\eta| < 1.52$ for electrons

At least one lepton with $p_T > 25 \text{ GeV}$, veto if third lepton with $p_T > 20 \text{ GeV}$

At least one lepton matched to the trigger object

R. Zhang

Extrapolated results

Extrapolate to 100 fb⁻¹

- Scale nominal and systematic templates
- Luminosity uncertainty unchanged

Y	ie	Ы	S
		lu	D.

Observed events

Fitted events

Fitted tW events Fitted $t\overline{t}$ events Fitted Z+jets events Fitted fake events

MC expected events

Exp. tW events Exp. $t\overline{t}$ events Exp. Z+jets events Exp. fake events

		-		
3.2/fb	1j1b	2j1b	2j2b)
Observed events	4254	6138	4912	
Fitted events	4257	6139	4908	
Fitted Wt events	910 ± 210	640 ± 160	210 ±	82
Fitted $t\bar{t}$ events	3230 ± 210	5340 ± 160	4670 ±	110
Fitted Z + jets events	69 ± 35	87 ± 46	7.6 ±	7.5
Fitted fake events	30 ± 26	40 ± 38	15 ±	14
Fitted diboson events	$23.5 \pm 6.$	$0 24.8 \pm 6.$	2 0.91 ±	0.23
		X32		
100/fb	1j1b		2j1b	
S	134705	1	94325	15
134744.6	2 ± 477.40	194266.32 ± 3	552.65	155595.67 ± 69
s 31792.57	± 4316.15	23003.58 ± 33	539.30	9514.55 ± 152
95248.55	± 4282.30	168232.43 ± 34	411.86	145426.58 ± 170
vents 1686.9	6 ± 767.75	921.25 ± 3	392.83	223.53_
ts 5355.26	± 1047.56	1341.86 ± 10	004.13	402.30_
vents 140345.19 =	± 24805.65	201105.47 ± 243	825.34 1	55178.30 ± 389
24043.66	± 4149.30	16671.75 ± 23	511.84	5179.49 ± 139
112417.37 =	£ 21268.15	178734.94 ± 230	689.45 1	49285.38 ± 3802
ents 2349.44	± 1175.75	3749.42 ± 13	876.36	235.82 ± 23
s 783.6	9 ± 779.94	1160.17 ± 1	154.63	448.88 ± 44

Extrapolated results

Extrapolate to 100 fb⁻¹

Asimov

- ★ mu_SIG 1.0 (+0.20,-0.19)
- ★ mu_TT 1.0 (+0.030,-0.028)

Compare to the results from the paper ★ mu_SIG 1.0 (+0.33,-0.29) \star mu_TT 1.0 (+0.044,-0.042)

20000 Postfit

Events

Prefit

Data/Pred.

red. Data/P

Extrapolated results - ranking plots I

R. Zhang

Top workshop

Other NPs are fixed to best fit when varying the studied NP

Extrapolated results - ranking plots II

R. Zhang

Top workshop

Other NPs are floated to best fit when varying the studied NP

Differential cross-section measurement

- Projecting to 100fb⁻¹, we redid the BDT cut optimisation
- The best BDT cut is at 0.3, the same as what we have now
- Slight drop on total uncertainty
- May improve if BDT training improves

$\frac{\mathrm{d}\sigma}{\mathrm{d}E(b)}, r_{\mathrm{BDT}} > 0.3$					
Statistical uncertainty	14.84	11.87	19.53	23.34	9.83
Total systematic uncertainty	52.48	98.48	47.41	107.55	76.72
Total uncertainty	54.54	99.19	51.28	110.06	77.35
$\frac{1}{\sigma} \frac{\mathrm{d}\sigma}{\mathrm{d}E(b)}, r_{\mathrm{BDT}} > 0.3$					
Statistical uncertainty	14.84	11.87	19.53	23.34	9.83
Total systematic uncertainty	32.43	25.29	32.92	36.78	18.05
Total uncertainty	35.67	27.94	38.28	43.56	20.56

100 fb⁻¹

$\frac{\mathrm{d}\sigma}{\mathrm{d}E(b)}, r_{\mathrm{BDT}} > 0.3$					
Statistical uncertainty	8.91	7.13	11.71	14.00	5.90
Total systematic uncertainty	52.49	98.48	47.40	107.52	76.74
Total uncertainty	53.24	98.74	48.83	108.43	76.97
$\frac{1}{\sigma} \frac{\mathrm{d}\sigma}{\mathrm{d}E(b)}, r_{\mathrm{BDT}} > 0.3$					
Statistical uncertainty	8.91	7.13	11.71	14.00	5.90
Total systematic uncertainty	18.10	25.30	32.42	32.95	36.75
Total uncertainty	33.62	26.28	34.97	39.33	19.04

Analysis improvements

Generator uncertainties

- **PS:** Plan to use other better modelled generator such as Herwig7 to reduce generator uncertainties
- value
- \star DS/DR: The DR2 sample is now available in aMC. If it will be available also in Powheg, the estimation of the interference of tW and ttbar will be better understood

□ JES uncertainties

- ★ JES flav. Comp. can be reduced by assign proper flav. Comp
- \star How to design the analysis to be more robust against JES (perhaps alternative BDT training)
- Particle flow jet study ongoing
- - **t** Study NeuroBayes with respect to BDT techniques
 - \star Consider including shape information for 2j2b bin

Differential cross section measurement

 \star With current BDT training, the improvement is small

R. Zhang

Top workshop

ME: The h_damp parameter in Powheg-box, which gives a cut-off scale for the first gluon emission, was set to be m_top. More recent study at 13TeV indicates that 1.5*m_top is the most optimal value. Future samples will employ this

s-channel

R. Zhang

Top workshop

11.05.2017

Recap of the analysis

Event selection:

- ► Isolated high- $p_t e \mid \mu \& 2 b$ -jets & large E_t
- Main backgrounds: tt, W+jets, single-top t-channel
- Matrix element method
 - **★** Build likelihood from partonic cross-sections of the hard scatter

(a) ME discriminant

s-Channel Measurement

Projection from 8 TeV to 13 TeV (study by Patrick Rieck)

• Reminder: s-channel observed at 8 TeV with 3.2σ

- than the *s*-channel
 - → larger backgrounds → measurement more difficult
- Fraction of W+jets bkg. stays mainly the same

Top workshop

R. Zhang

tt and t-channel cross-sections (main backgrounds) increase more

s-Channel Measurement **Projection from 8 TeV to 13 TeV**

- 1. Reweight all processes by $\frac{\sigma(13 \text{ TeV})}{\sigma(8 \text{ TeV})}$ (Use same fraction for multi-jet as for 8 TeV)
- 2. Reweight all contributions to new integrated luminosity
- 3. Adopt all systematics from 8 TeV analysis (neglect MC statistics)
- 4. Repeat signal extraction fit & compute significance

→ luminosity dependence

Top workshop

s-Channel Measurement @13 TeV

Status:

- Analysis project recently started (Stephan, Oliver)
- Based on SgTop-D3PDs v15
- Currently working on analysis set-up, multi-jet estimate, cut optimization etc.

Example for leading lepton *p*_t (without multi-jet bkg)

ata/MC

EFT Interpretation Prospects Simultaneous s|t-channel analysis:

- Allows determination of effective couplings:
 - $C_{\phi q}$
 - Cqq

A reduction of the *s*-channel uncertainty from 34% (8 TeV) to 15% (13 TeV estimate) would allow

- to resolve the ambiguity for the 1 σ region of c_{qq} and $c_{\phi q}$
- to narrow the limit for c_{aq} by ≈ 2

R. Zhang

Top workshop

11.05.2017

: corrections to the Wtb vertex by new physiscs : four-fermion interactions by new massive gauge mediators

High-q² s-Channel Analysis

- See This Talk
- - \rightarrow large invariant tb masses (+ jets)
- Motivation: high- q^2 s-channel events very sensitive to the anomalous coupling $|g_{\rm R}|^2$
- Large t-channel backgrounds

Not sure whether this proposal works at LHC energies A sensitivy study is clearly needed before any further decision

Top workshop

Rapidity distributions for $m_{tb} > 10$ **TeV**

11.05.2017

R. Zhang

Proposed by M. Mangano & J. A. Aguilar-Saavedra for a 100 TeV collider

Basic idea: look at s-channel events with high momentum transfer

Conclusion

- □ tW inclusive measurement
 - **Will benefit from higher statistics**
 - **H** Better BDT training
 - **†** Current modelling systematics trend to be overestimated
- tW differential
 - **No** improvement from purely BDT cut optimisation
 - A May improve by other aspects such as better BDT training

Top workshop

- **S**-channel
 - \star More challenging at 13 TeV
 - \star Hope for an observation

