

Associated single top-quark production in leptonic channels at 13 TeV (t + V)

Ian C. Brock, Irina Cioară, Regina Moles, Rui Zhang Physikalisches Institut, Universität Bonn (in collaboration with University of Oklahoma, **Boston University and the University of Sydney**)

Introduction on single top-quark production

Electroweak processes

Tests of SM predictions

- Sensitive to V_{tb}
- Constrain PDFs
- Probing new physics
- Help tuning MC generators (unfolded distributions)

R. Zhang

ATLAS-D

06.09.2017

 $\Box t/tW/s$ -channels observed at LHC *t*-channel differential measured at LHC

Electroweak processes

Tests of SM predictions

- Sensitive to V_{tb}
- Constrain PDFs
- Probing new physics
- Help tuning MC generators (unfolded distributions)

R. Zhang

ATLAS-D

06.09.2017

 $\Box t/tW/s$ -channels observed at LHC *t*-channel differential measured at LHC

> This talk: tZq tW differential

Data and simulated sample

Data: 2015+2016 25ns dataset corresponding to 36.1 fb⁻¹

Simulated samples: signal, backgrounds

R. Zhang

ATLAS-D

06.09.2017

tZq cross-section measurement

R. Zhang

ATLAS-D

06.09.

Backgrounds estimation

Diboson (dominant)

- Scale factor of normalisation derived from diboson CR

- $\Box t\bar{t}$ (non-prompt or fake leptons)
 - \diamond Scale factor of normalisation derived from $t\bar{t}$ CR
 - \diamond Systematics taken by varying the m_{ll} cut in $t\bar{t}$ CR, as well as statistical uncertainty in CR
 - Scale factor = 1.21 ± 0.51
- □ Z+jets (non-prompt or fake leptons) 3 tight Data-driven method \diamond w.r.t. $p_{T}(l_{w})$ of the lepton not associated to the Z 2 tight boson and lepton flavour 1 loose leptons Others are small

R. Zhang

ATLAS-D

06.09.2017

\diamond Systematics taken by varying the m_T(W) cut in diboson CR, and compare SHERPA and POWEG

Multivariate analysis

- Neural network (NN) used to separate signal from background
- Signal trained against all backgrounds (except *tt*, *tW* and *tWZ*)
- 10 variables kept for training
- The separation worked very well and the NN description was checked in VRs and in the SR for NN<0.5 before unblinding.

Events / 0

ata/Pred.

Systematics and results

Systematics sources

- Object reconstruction and calibration uncertainties
- Signal PDF and radiation
- Backgrounds
- Luminosity 2.1%
- A likelihood fit performed
 - Clear evidence of single-top production in association with a Z boson
 - Signal cross-section extracted to be $600 \pm 170 \text{ (stat.)} \pm 140 \text{ (syst.) fb}$
 - \diamond corresponding to observed (expected) significance 4.2 σ **(5.4**σ)
 - CONF note and the paper is at the PubCom sign-off stage
 - **FSP Newsflash and Physics Briefing available**

R. Zhang

ATLAS-D

06.09.2017

Source	Uncertainty [%]
<i>tZq</i> radiation	±10.8
Jets	±4.6
<i>b</i> -tagging	±2.9
MC statistics	±2.8
Luminosity	±2.1
Leptons	±2.1
tZq PDF	±1.2
$E_{ m T}^{ m miss}$	±0.3

tW differential cross-sections

- First tW differential cross-section measurement
 - Can be done with 36.1fb⁻¹ 13 TeV data
- Di-lepton final state to reduce backgrounds Variables to unfold
 - \Leftrightarrow E(*llb*), mT(*llvvb*), m(*llb*): *tW* system
 - E(b): top-quark production
 - \Leftrightarrow m(l₁b), m(l₂b): top-quark decay

ATLAS-D

06.09.2017

Event selection table

At least one jet with $p_{\rm T} > 25 \,\text{GeV}, |\eta| < 2.5$

Exactly two leptons of opposite charge with $p_{\rm T} > 20 \,{\rm GeV}$,

 $|\eta| < 2.5$ for muons and $|\eta| < 2.47$ excluding $1.37 < |\eta| < 1.52$ for electrons

At least one lepton with $p_T > 25$ GeV, veto if third lepton with $p_T > 20$ GeV

At least one lepton matched to the trigger object

Different flavour	$E_{\rm T}^{\rm miss} > 50 { m GeV},$ $E_{\rm T}^{\rm miss} > 20 { m GeV},$	
	$E_{\rm T}^{\rm miss} > 40 {\rm GeV},$	always
Same flavour	veto,	$\text{if } m_{\ell\ell} < 40\text{GeV}$
	$4E_{\rm T}^{\rm miss}>5m_{\ell\ell},$	$\mathrm{if}40\mathrm{GeV} < m_{\ell\ell} < 81\mathrm{GeV}$
	veto,	if 81 GeV $< m_{\ell\ell} < 101$ GeV
	$2m_{\ell\ell} + E_{\rm T}^{\rm miss} > 300{\rm GeV},$	$\text{if } m_{\ell\ell} > 101 \text{GeV}$

Multivariate analysis

- Gradient BDT provided by TMVA
 Selection of variables
 - Rank variables by separation power:

$$< S^{2} > = \frac{1}{2} \int \frac{(Y_{S}(y) - Y_{B}(y))^{2}}{(Y_{S}(y) + Y_{B}(y))} dy$$

- Keep only one variable if several are correlated (>0.8)
- ✤ Find combinations that give highest <S²>
- Use the set of fewer variables that give similar <S²>
- Enrich signal by requiring BDT > 0.3

Variable	$S[10^{-2}]$	$\begin{array}{c} - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - $
$p_{\rm T}^{\rm sys}(\ell_1\ell_2E_{\rm T}^{\rm miss}b)$	4.1	$\sqrt{5} = 13 \text{ TeV}, 36.1 \text{ fb}^{-1}$
$\Delta p_{\rm T}(\ell_1 \ell_2 b, E_{\rm T}^{\rm miss})$	2.5	ш 1,12 8000- 0thers
$\sum E_{ m T}$	2.3	
$\eta(\ell_1\ell_2 E_{\mathrm{T}}^{\mathrm{miss}}b)$	1.3	
$\Delta p_{\rm T}(\ell_1\ell_2, E_{\rm T}^{\rm miss})$	1.1	
$p_{\mathrm{T}}^{\mathrm{sys}}(\ell_1\ell_2b)$	1.0	2000
$C(\ell_1\ell_2)$	0.9	
$m(\ell_2, b)$	0.2	1.6 1.6 1.6 1.6 1.6 1.4
$m(\ell_1, b)$	0.1	
BDT response	8.1	Ö.ö₽ <u> </u>

BDT response

Unfolding and cross-section determination

Iterative Bayesian unfolding technique of D'Agostini implemented in RooUnfold

$$N_i^{\text{ufd}} = \frac{1}{C_i^{\text{eff}}} \sum_j M_{ij}^{-1} C_j^{\text{oof}} (N_j^{\text{data}} - B_j)$$

Corrections for detector acceptance (out-of-fiducial), resolution (migration matrix) and efficiency Binning is determined so that more than ~60% events in diagonal and E_{l(1)l(2)b} [GeV] ~20% stat. unc. in each bin Cross-section calculation

$$\frac{\mathrm{d}\sigma_i}{\mathrm{d}X} = \frac{N_i^{\mathrm{ufd}}}{L\Delta_i}$$
$$\sigma^{\mathrm{fid}} = \sum_i \left(\frac{\mathrm{d}\sigma_i}{\mathrm{d}X} \cdot \Delta_i\right) = \sum_i \frac{N_i^{\mathrm{ufd}}}{L}$$

R. Zhang

ATLAS-D

06.09.2017

Systematics and results

Systematics sources

- Object reconstruction and calibration uncertainties
- Signal and tt modelling
- Background normalisations
- Non-closure on stress test
- Luminosity 2.1%

Discussions

In general most MC models show fair agreement with data

- Many variables show a negative slope in Pred./Data, indicating softer final objects in MC
- Powheg-Box +Herwig++ deviates more from the data and from the other predictions in certain bins of the E(*llb*), $m(l_1b)$ and m(llb) distributions
- DR is systematically closer to the data than DS for several variables
- No significant difference between ISR/FSR is seen
- Public Reading today (Wednesday) and release plots for Top 2017.

Observable	E(b)		$E(\ell\ell b)$		$m_{\rm T}(\ell\ell\nu\nu b)$		$m(\ell_1 b)$		$m(\ell\ell b)$		$m(\ell_2 b)$	
Prediction	χ^2	p	χ^2	p	χ^2	p	χ^2	p	χ^2	p	χ^2	р
Powheg+Pythia6 (DR)	4.8	0.31	8.1	0.15	2.0	0.56	5.7	0.34	4.0	0.55	2.6	0.45
Powheg+Pythia6 (DS)	5.0	0.29	9.1	0.11	2.4	0.49	6.1	0.30	4.4	0.50	2.6	0.46
aMC@NLO+Herwig++	5.6	0.23	8.7	0.12	1.8	0.61	5.4	0.37	3.6	0.61	2.4	0.49
Powheg+Herwig++	6.2	0.18	11.0	0.05	2.0	0.57	8.1	0.15	5.2	0.40	2.3	0.52
Powheg+Pythia6 radHi	4.8	0.30	7.9	0.16	1.9	0.60	5.3	0.38	3.7	0.60	2.5	0.48
Powheg+Pythia6 radLo	5.0	0.29	8.4	0.14	2.1	0.56	5.8	0.33	4.0	0.55	2.6	0.45

R. Zhang

ATLAS-D

06.09.2017

Conclusion

A clear evidence of single-top production in association with a Z boson

06.09.2017

ATLAS-D

R. Zhang

Normalised differential cross-sections for the tW channel are measured for several variables

Backup

R. Zhang

ATLAS-D

06.09.2017

tZq cross-section measurement

 \Box SM single-top production in association with a Z boson (t-channel) yet unmeasured • CMS search on 8 TeV data [JHEP], observed (expected) significance 2.4 σ (1.8 σ) Important test of SM predictions SM tZq involves both tZ and WWZ couplings Unlikely tīZ only probes tZ Important background for: FCNC *tZ* production ♦ tH final state Vector-like quarks **Trilepton final state** Iow branching fraction (2.2%) High s/b ratio (00000000

R. Zhang

ATLAS-D

06.09.2017

Event selection

			_		-	-		-				
					a		a'					
	exactly 3 leptons with $ \eta < 2.5$ and $p_T > 15 \text{ GeV}$ $p_T(\ell_1) > 28 \text{ GeV}, p_T(\ell_2) > 25 \text{ GeV}, p_T(\ell_3) > 15 \text{ GeV}$ $p_T(\text{jet}) > 30 \text{ GeV}$ $m_T(\ell_W, \nu) > 20 \text{ GeV}$									4	Z	
	SR			Diboson VR / CH	٤	$t\bar{t}$ V	'R	tī CR		wS		v
	$\geq 1 \text{ OSSF}$ $ m_{\ell\ell} - m_Z <$ $= 2 \text{ jets, } \eta $	Pair 10 GeV < 4.5		$\geq 1 \text{ OSSF Pair}$ $m_{\ell\ell} - m_Z < 10 \text{ G}$ = 1 jet, $ \eta < 4.5$	eV	$\geq 1 \text{ OSS}$ $ m_{\ell\ell} - m_Z $ $= 2 \text{ jets, } $	SF Pair > 10 GeV η < 4.5	\geq 1 OSOF Par = 2 jets, $ \eta < 4$	ir 4.5	b		× v
	= 1 <i>b</i> -jet, $ \eta $	< 2.5	VR/C	R: $m_{\rm T}(\ell_W, \nu) > 20$	/60 GeV	= 1 <i>b</i> -jet,	η < 2.5 -	= 1 <i>b</i> -jet, $ \eta <$	2.5			∽ b
Pro	cess	Raw ev	ents	Scaled events	Proces	S	Raw even	ts Scaled ev	vents	Process	Scaled events	Raw ev
tīV	$+ t\bar{t}H + tWZ$	931	1	19.9 ± 0.4	$t\bar{t}V + t$	$\bar{t}H + tWZ$	4 4 4 8	9.9 ±	0.3	$t\bar{t}V + t\bar{t}H + tWZ$	13.7 ± 0.3	7 97
Dib	oson	243	56	52.7 ± 15.9	Dibose	on	64 082	1778.9 ± 3	533.8	Diboson Z Liete	10.4 ± 3.2	57
$Z + t\bar{t} +$	jets tW	21	/5 14	36.9 ± 15.1 18.1 ± 8.6	Z + jets $t\bar{t} + tW$	S 7	1 /92	$290.8 \pm 36.5 \pm$	116.6	z + jets $t\bar{t}$	6.7 ± 2.7 61.2 ± 26.3	55 17
tZq		343	38	35.2 ± 0.7	tZq		1 760	$17.7 \pm$	0.5	tZq	3.3 ± 0.2	32
Tota	al expected	15 52	24	162.7 ± 23.5	Total e	xpected	72 201	$2133.7\pm$	546.6	Total expected	95.4 ± 26.6	9 57
Data	a	141	-	141	Data		1 984	1 984	ł	Data	102	102
<i>R</i> . 2	hang	ÂĪ	LAS-L) Ú	6.09.20	17						

NN output

Event selection

At least one jet with $p_{\rm T} > 25 \,\text{GeV}, |\eta| < 2.5$

Exactly two leptons of opposite charge with $p_{\rm T} > 20 \,\text{GeV}$,

 $|\eta| < 2.5$ for muons and $|\eta| < 2.47$ excluding $1.37 < |\eta| < 1.52$ for electrons

At least one lepton with $p_T > 25 \text{ GeV}$, veto if third lepton with $p_T > 20 \text{ GeV}$

At least one lepton matched to the trigger object

Different flavour	$E_{\rm T}^{\rm miss} > 50 { m GeV},$ $E_{\rm T}^{\rm miss} > 20 { m GeV},$	
	$E_{\rm T}^{\rm miss} > 40 {\rm GeV},$	always
Same flavour	veto,	$\text{if } m_{\ell\ell} < 40\text{GeV}$
	$4E_{\rm T}^{\rm miss} > 5m_{\ell\ell},$	$\mathrm{if}40\mathrm{GeV} < m_{\ell\ell} < 81\mathrm{GeV}$
	veto,	$\mathrm{if} \ 81 \mathrm{GeV} < m_{\ell\ell} < 101 \mathrm{GeV}$
	$2m_{\ell\ell} + E_{\rm T}^{\rm miss} > 300{\rm GeV},$	if $m_{\ell\ell} > 101 \text{GeV}$

- ♦ 2 lepton with p_T >20GeV, $|\eta|<2.5$, of which
 >=1 lepton p_T >27GeV
- b-jet p_T>25GeV, |η|<2.5
 </p>
- No particular E_T^{miss} cut

R. Zhang

ATLAS-D

06.09.2017

Results and discussions

Both stat. and syst. uncertainties have a significant impact on the results

R. Zl

Results and discussions

In general most MC models show fair agreement with data

- certain bins of the E(*llb*), $m(l_1b)$ and m(llb) distributions
- DR is systematically closer to the data than DS for several variables
- No significantly difference is seen in ISR/FSR

Observable	E(b)		$E(\ell\ell b)$		$m_{\rm T}(\ell\ell\nu\nu b)$		$m(\ell_1 b)$		$m(\ell\ell b)$		<i>m</i> ($\ell_2 b)$
Prediction	χ^2	р	χ^2	p	χ^2	p	χ^2	р	χ^2	р	χ^2	p
Powheg+Pythia6 (DR)	4.8	0.31	8.1	0.15	2.0	0.56	5.7	0.34	4.0	0.55	2.6	0.45
Powheg+Pythia6 (DS)	5.0	0.29	9.1	0.11	2.4	0.49	6.1	0.30	4.4	0.50	2.6	0.46
aMC@NLO+Herwig++	5.6	0.23	8.7	0.12	1.8	0.61	5.4	0.37	3.6	0.61	2.4	0.49
Powheg+Herwig++	6.2	0.18	11.0	0.05	2.0	0.57	8.1	0.15	5.2	0.40	2.3	0.52
Powheg+Pythia6 radHi	4.8	0.30	7.9	0.16	1.9	0.60	5.3	0.38	3.7	0.60	2.5	0.48
Powheg+Pythia6 radLo	5.0	0.29	8.4	0.14	2.1	0.56	5.8	0.33	4.0	0.55	2.6	0.45

R. Zhang

ATLAS-D

06.09.2017

Many variables show a negative slope in Pred./Data, indicating softer final objects in MC Powheg-Box +Herwig++ deviates more from the data and from the other predictions in

Conclusion

- Differential cross-section for the tW channel is measured for several variables using 2015+2016 dataset
- Fiducial phase-space is 1j1b region
- Normalised differential crosssection are shown to cancel some systematics

Thank you for your attention!

R. Zhang

ATLAS-D

06.09.2017

			~						
E(l)	b) Bin [GeV]	[25,	60] [60, 1	100]	[100, 1	[35] [135]	, 175]	[175, 50)0]
(1/	σ)d σ /dx [1/x]	0.00	0438 0.00	613	0.00	474 0.0	00252	0.001	03
Sta	tistical uncertainty		25	20		28	37	ç	9.3
Tot	al systematic uncerta	ainty	33	28		34	37		16
Tot	al uncertainty	-	41	34		44	53		18
$E(\ell\ell b)$ E	Bin [GeV]	[50, 175]	[175, 275] [27	75, 375] [375, 50	0] [:	500, 700]	[700, 12
$(1/\sigma) d\sigma$	dx [1/x]	0.000597	0.00322	2 (0.00185	0.001	35	0.000832	0.000
Statistica	l uncertainty	30	12	2	18	3	18	14	
Total sys	tematic uncertainty	24	13	3	12	2 :	53	52	
Total unc	certainty	38	18	8	22	2 :	56	53	
	$m_{\rm T}(\ell\ell\nu\nu b)$ Bin [G	eV]	[50, 275]	[275,	375]	[375, 500]	[500), 1000]	
	$(1/\sigma) d\sigma/dx [1/x]$		0.0033	0.0	0123	0.000856	5	.51e-05	
	Statistical uncertain	nty	7.1		29	16		21	
	Total systematic ur	certainty	7.8		38	40		50	
	Total uncertainty		11		48	43		55	
$m(\ell_1 b)$ E	Bin [GeV]	[0, 60]	[60, 100]	[100), 150]	[150, 200] [20	00, 250]	[250, 400
$(1/\sigma)d\sigma$	dx [1/x]	0.000191	0.00428	0.	00806	0.0033	3	0.00153	0.0011
Statistica	l uncertainty	130	21		12	2	2	32	1
Total sys	tematic uncertainty	39	22		13	24	4	46	2
Total unc	ertainty	140	30		18	3.	3	56	2
$m(\ell\ell b)$ B	Bin [GeV]	[0, 125]	[125, 175]	[175	5, 225]	[225, 300] [3	00, 400]	[400, 100
$(1/\sigma)d\sigma$	dx [1/x]	0.00051	0.00533	0.	00538	0.00242	2 0	.000949	0.0002
Statistica	l uncertainty	35	15		15	1	9	25	
Total sys	tematic uncertainty	25	13		15	1′	7	16	
Total unc	ertainty	43	20		21	20	6	30	
	$m(\ell_2 b)$ Bin [GeV	']	[0, 50]	[50,]	100]	[100, 150]	[150	, 400]	
	$(1/\sigma)d\sigma/dx$ [1/x	0.00184	0.00)845	0.00531	0.0	00879		
	Statistical uncerta	ainty	30		11	14		9.6	
	Total systematic	uncertainty	37		20	21		58	
	Total uncertainty		48		23	25		59	

