One Two

Geschäftsführender Direktor

Prof. Dr. Klaus Desch
[Email protection active, please enable JavaScript.]
Raum 1.035
Physikalisches Institut
Nussallee 12
53115 Bonn 
Tel.: +49-228-73 3236
Fax: +49-228-73 7869

Sprechstunden nach Vereinbarung



Jacqueline Weigelt
[Email protection active, please enable JavaScript.]
Raum 1.040
Nußallee 12
53115 Bonn
Tel.: +49-228-73 2341
Fax: +49-228-73 7869

Sie sind hier: Startseite Aktuelles Wolfgang-Paul-Vorlesungen


Wolfgang Paul wirkte von 1952 bis 1993 als Professor am Physikalischen Institut der Universität Bonn. In ehrenvollem Gedenken an ihn werden in regelmäßigen Jahresabständen herausragende Physiker zu Wolfgang-Paul-Vorlesungen an das Physikalische Institut eingeladen. Die Einrichtung dieser Veranstaltung verdanken wir einer Stiftung, in die Wolfgang Paul die Hälfte seines Nobel-Preisgeldes eingebracht hat und die seinen Namen trägt.

Bisherige Gäste waren:



Paul Corkum (University of Ottawa and National Research Council of Canada)

2.5.2019, 10:15h - Extending our time horizon to attoseconds and beyond
Attosecond pulses are generated by electrons that are extracted from an atom, molecule or solid by an intense light pulse and then travel under the influence of the electric field  of the light. Portions of each electron wave packet are forced to re-collide with its parent ion (or hole) after the field reverses direction. Upon re-collision, the electron can recombine, emitting soft X-ray radiation that can be in the form of attosecond pulses. This highly nonlinear process offers unique measurement opportunities - for measuring the attosecond pulse itself; the orbital(s) from which it emerged; and the band structure of material in which the wave packets moved.


Hitoshi Murayama (University of Tokyo and UC Berkeley) 
3.5.2016, 10:15h - The Quantum Universe

Where do we come from? Science is making progress on this age-old question of humankind. The Universe was once much smaller than the size of an atom. Small things mattered in the small Universe, where quantum physics dominated the scene. To understand the way the Universe is today, we have to solve remaining major puzzles. The Higgs boson that was discovered recently is holding our body together from evaporating in a nanosecond. But we still do not know what exactly it is. The mysterious dark matter is holding the galaxy together, and we would not have been born without it. But nobody has seen it directly. And what is the very beginning of the Universe?







David Wineland (NIST, Boulder, Colorado, USA)

13.11.2013 - Wolfgang Paul's ion traps and the quest for quantum control

David Jeffrey Wineland leads the ion storage group at the National Institute of Standards and Technology (NIST) and is member of the physics faculty of the University of Colorado at Boulder. His work has included advances in optics, specifically laser cooling of ions in Paul traps and the use of trapped ions to implement quantum computing operations. He was awarded the 2012 Nobel Prize for Physics, jointly with Serge Haroche, for "ground-breaking experimental methods that enable measuring and manipulation of individual quantum systems."

Rolf Heuer





Rolf Heuer (CERN)

16.11.2011 - The search of a deeper understanding of our universe at the Large Hadron Collider: the Worlds Largest Particle Accelerator

With the start of the Large Hadron Collider (LHC) at CERN, particle physics entered a new era. The LHC will provide a deeper understanding of the universe and the insights gained could change our view of the world, and the talk will present some of the reasons for the excitement surrounding the LHC. The LHC is expected to yield insights into the origin of mass, the nature of dark matter and the existence of hidden extra dimensions. It will address the exciting physics prospects offered by the LHC, present first results since the start of datataking in March last year and also a look forward.






Wolgang Ketterle (Massachusetts Institute of Technology)

10.06.2009 - Superfluid gases near absolute zero temperature

What is the benefit of realizing superfluidity in a gas a million times more dilute than air? Such systems consist of well-separated atoms which can be observed and manipulated with the control and precision of atomic physics, and which can be treated with first-principles calculations. One such form of superfluidity occurs when a gas of bosons undergoes Bose-Einstein condensation (BEC). A richer situation is realized with ultracold fermions. Fermions have to form pairs before they can become superfluid. By continuously changing the interaction strength using a scattering resonance we were able to study superfluidity for varying pair size, connecting the BEC limit with the case of BCS Cooper pairs, which are larger than the interatomic spacing. These studies illustrate a new approach to condensed-matter physics where many-body Hamiltonians are realized in dilute atomic gases.







Anton Zeilinger (Universität Wien)

04.07.2007 - Nichtlokalität und Quantenkommunikation

Eine der erstaunlichsten Konsequenzen der Quantenheorie ist die Tatsache, dass zwei oder mehr Systeme auf viel engere Weise miteinander zusammenhängen können als in der klassischen Physik. Dieses „Verschränkung“ genannte Phänomen bedeutet, dass die Welt nicht lokal realistisch beschreibbar ist. Im Vortrag werden einige grundlegende experimentelle Tests dieser Verschränkung präsentiert. In einem jüngsten Experiment konnten auch gewisse nichtlokale Theorien ausgeschlossen werden.
Darauf aufbauend hat sich Verschränkung als ein wichtiger Baustein für Quantenkommunikation und den Quantencomputer etabliert. Wichtige Anwendungen sind die Quantenkryptographie und die Quantenteleportation. Quantenkryptographie mit verschränkten Photonen, deren Sicherheit immanent ist, hat einen technisch hoch entwickelten Status erreicht, wobei Entfernungen von der Größenordnung von 100 km überwunden werden konnten. Eine frappierende Anwendung der Verschränkung liegt im sogenannten „Ein-Weg-Quantencomputer“ vor. Hier besteht das Rechnen aus einer Abfolge von Messungen an einem hinreichend komplexen verschränkten Anfangszustand. Dies stellt ein prinzipiell neues Konzept dessen dar, was ein Computer an sich ist.




Donald H. Perkins (St. Catherine's College Oxford)

26.10.2004 - Are diamonds for ever, or do protons decay? A tale of the unexpected.







N. David Mermin (Cornell University)

14.10.2002 - The Computational Power of Quantum Mechanics.







M. S. Turner (Chicago University)

06.12.2000 - How the Universe began
08.12.2000 - Precision Cosmology at the New Millenium





Steven Chu (Stanford University)

18.06.1998 - Laser cooling and trapping of atoms and bio-molecules






Ugo Amaldi (Università di Milano)

30.04.1996 - Physics and Medicine at a New Frontier: Oncological Hadron Therapy

02.05.1996 - Particle Colliders and the Nature of the Vacuum






Richard E. Taylor (Stanford University)

18.01.1994 - Elastic Electron Scattering and the Size of the Proton
20.01.1994 - Elastic Electron Scattering and the Structure of the Proton